1,050
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Texture and water holding capacity of oat drinks fermented with lactic acid bacteria, bifidobacteria and Propionibacterium

, , &
Pages 106-122 | Received 04 Sep 2023, Accepted 08 Dec 2023, Published online: 25 Dec 2023

References

  • Motarjemi, Y. Impact of Small Scale Fermentation Technology on Food Safety in Developing Countries. Int. J. Food Microbiol. 2002, 75(3), 213–229. DOI: 10.1016/S0168-1605(01)00709-7.
  • Roberfroid, M. B. What is Beneficial for Health? The Concept of Functional Food. Food. Chem. Toxicol. 1999, 37(9), 1039–1041. DOI: 10.1016/S0278-6915(99)00080-0.
  • Salminen, S.; Ouwehand, A.; Benno, Y.; Lee, Y. K. Probiotics: How Should They Be Defined? Trends Food Sci. Technol. 1999, 10(3), 107–110. DOI: 10.1016/S0924-2244(99)00027-8.
  • Ziarno, M.; Cichońska, P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms. 2021, 9(12), 2532. DOI: 10.3390/microorganisms9122532.
  • Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms. 2022, 10(1), 91. DOI: 10.3390/microorganisms10010091.
  • Cichońska, P.; Kowalska, E.; Ziarno, M. Fermentation of Plant-Based Beverages Using Lactic Acid Bacteria – a Review. Postępy Tech. Przetwórstwa Spoż. 2022, 86–97.
  • Cui, L.; Jia, Q.; Zhao, J.; Hou, D.; Zhou, S. A Comprehensive Review on Oat Milk: From Oat Nutrients and Phytochemicals to Its Processing Technologies, Product Features, and Potential Applications. Food Funct. 2023, 14(13), 5858–5869. DOI: 10.1039/D3FO00893B.
  • Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A Comprehensive Review of the Benefits of and the Barriers to the Switch to a Plant-Based Diet. Sustainability. 2020, 12(10), 4136. DOI: 10.3390/su12104136.
  • Ziarno, M.; Zaręba, D. Substancje dodatkowe stosowane w serowarstwie. Przem. Spoż. 2007, T. 61(10), 34–38.
  • Parrish, C. R.; Over, M.-O. Cow’s Milk: The Rise of Plant-Based Dairy Alternatives. Pract. Gastroenterol. 2018, 7, 20–27.
  • Ibrahim, M. S.; Ahmad, A.; Sohail, A.; Asad, M. J. Nutritional and Functional Characterization of Different Oat (Avena Sativa L.) Cultivars. Int. J. Food. Prop. 2020, 23(1), 1373–1385. DOI: 10.1080/10942912.2020.1806297.
  • Sangwan, S.; Singh, R.; Tomar, S. Nutritional and Functional Properties of Oats: An Update. 2014.
  • Savas, B. S.; Akan, E. Oat Bran Fortified Raspberry Probiotic Dairy Drinks: Physicochemical, Textural, Microbiologic Properties, in vitro Bioaccessibility of Antioxidants and Polyphenols. Food Biosci. 2021, 43, 101223. DOI: 10.1016/j.fbio.2021.101223.
  • Ullah, H.; Hussain, Y.; Santarcangelo, C.; Baldi, A.; Di Minno, A.; Khan, H.; Xiao, J.; Daglia, M. Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules. 2022, 27(6), 1906. DOI: 10.3390/molecules27061906.
  • Butt, M. S.; Tahir-Nadeem, M.; Khan, M. K. I.; Shabir, R.; Butt, M. S. Oat: Unique Among the Cereals. Eur. J. Nutr. 2008, 47(2), 68–79. DOI: 10.1007/s00394-008-0698-7.
  • Zhang, Y.; Li, Y.; Ren, X.; Zhang, X.; Wu, Z.; Liu, L. The Positive Correlation of Antioxidant Activity and Prebiotic Effect About Oat Phenolic Compounds. Food Chem. 2023, 402, 134231. DOI: 10.1016/j.foodchem.2022.134231.
  • Ziarno, M.; Zaręba, D. The Effect of the Addition of Microbial Transglutaminase Before the Fermentation Process on the Quality Characteristics of Three Types of Yogurt. Food Sci. Biotechnol. 2020, 29(1), 109–119. DOI: 10.1007/s10068-019-00640-6.
  • Bezerra, M. F.; Souza, D. F. S.; Correia, R. T. P. Acidification Kinetics, Physicochemical Properties and Sensory Attributes of Yoghurts Prepared from Mixtures of Goat and Buffalo Milks. Int. J Dairy Technol. 2012, 65(3), 437–443. DOI: 10.1111/j.1471-0307.2012.00845.x.
  • Varghese, K.; Mishra, S.; N, H. Modelling of Acidification Kinetics and Textural Properties in Dahi (Indian Yogurt) Made from Buffalo Milk Using Response Surface Methodology. Int. J Dairy Technol. 2008, 61(3), 284–289. DOI: 10.1111/j.1471-0307.2008.00411.x.
  • International Organization for Standardization. ISO 6887-5:2020. Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 5: Specific Rules for the Preparation of Milk and Milk Products; 2020.
  • Ziarno, M.; Derewiaka, D.; Dytrych, M.; Stawińska, E.; Zaręba, D. Effects of Fat Content on Selected Qualitative Parameters of a Fermented Coconut “Milk” Beverage. J. Food Nutr. Res. 2020, 59(2), 155–162.
  • Helland, M. H.; Wicklund, T.; Narvhus, J. A. Growth and Metabolism of Selected Strains of Probiotic Bacteria, in Maize Porridge with Added Malted Barley. Int. J. Food Microbiol. 2004, 91(3), 305–313. DOI: 10.1016/j.ijfoodmicro.2003.07.007.
  • Salmerón, I.; Thomas, K.; Pandiella, S. S. Effect of Substrate Composition and Inoculum on the Fermentation Kinetics and Flavour Compound Profiles of Potentially Non-Dairy Probiotic Formulations. LWT - Food Sci. Technol. 2014, 55(1), 240–247. DOI: 10.1016/j.lwt.2013.07.008.
  • Luana, N.; Rossana, C.; Curiel, J. A.; Kaisa, P.; Marco, G.; Rizzello, C. G. Manufacture and Characterization of a Yogurt-Like Beverage Made with Oat Flakes Fermented by Selected Lactic Acid Bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. DOI: 10.1016/j.ijfoodmicro.2014.05.004.
  • Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-Like Beverages Made of a Mixture of Cereals, Soy and Grape Must: Microbiology, Texture, Nutritional and Sensory Properties. Int. J. Food Microbiol. 2012, 155(3), 120–127. DOI: 10.1016/j.ijfoodmicro.2012.01.016.
  • Lazaridou, A.; Serafeimidou, A.; Biliaderis, C. G.; Moschakis, T.; Tzanetakis, N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-Glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocoll. 2014, 39, 204–214. DOI: 10.1016/j.foodhyd.2014.01.015.
  • Mårtensson, O.; Andersson, C.; Andersson, K.; Öste, R.; Holst, O. Formulation of an Oat-Based Fermented Product and Its Comparison with Yoghurt. J. Sci. Food Agric. 2001, 81(14), 1314–1321. DOI: 10.1002/jsfa.947.
  • Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a New Oat-Based Probiotic Drink. Int. J. Food Microbiol. 2006, 112(1), 75–80. DOI: 10.1016/j.ijfoodmicro.2006.05.015.
  • Gupta, S.; Cox, S.; Abu-Ghannam, N. Process Optimization for the Development of a Functional Beverage Based on Lactic Acid Fermentation of Oats. Biochem. Eng. J. 2010, 52(2), 199–204. DOI: 10.1016/j.bej.2010.08.008.
  • Russo, P.; de Chiara, M. L. V.; Capozzi, V.; Arena, M. P.; Amodio, M. L.; Rascón, A.; Dueñas, M. T.; López, P.; Spano, G. Lactobacillus Plantarum Strains for Multifunctional Oat-Based Foods. LWT - Food Sci. Technol. 2016, 68, 288–294. DOI: 10.1016/j.lwt.2015.12.040.
  • Walsh, H.; Ross, J.; Hendricks, G.; Guo, M. Physico-Chemical Properties, Probiotic Survivability, Microstructure, and Acceptability of a Yogurt-Like Symbiotic Oats-Based Product Using Pre-Polymerized Whey Protein as a Gelation Agent. J. Food Sci. 2010, 75(5), M327–M337. DOI: 10.1111/j.1750-3841.2010.01637.x.
  • Raikos, V.; Juskaite, L.; Vas, F.; Hayes, H. E. Physicochemical Properties, Texture, and Probiotic Survivability of Oat-Based Yogurt Using Aquafaba as a Gelling Agent. Food Sci. Nutr. 2020, 8(12), 6426–6432. DOI: 10.1002/fsn3.1932.
  • Kütt, M.-L.; Orgusaar, K.; Stulova, I.; Priidik, R.; Pismennõi, D.; Vaikma, H.; Kallastu, A.; Zhogoleva, A.; Morell, I.; Kriščiunaite, T. Starter Culture Growth Dynamics and Sensory Properties of Fermented Oat Drink. Heliyon. 2023, 9(5), e15627. DOI: 10.1016/j.heliyon.2023.e15627.
  • Akan, E.; Karakaya, S.; Eda Eker Özkacar, M.; Kinik, Ö. Effect of Food Matrix and Fermentation on Angiotensin-Converting Enzyme Inhibitory Activity and β-Glucan Release After in vitro Digestion in Oat-Based Products. Food Res. Int. Ott. Ont. 2023, 165, 112508. DOI: 10.1016/j.foodres.2023.112508.
  • Part, N.; Kazantseva, J.; Rosenvald, S.; Kallastu, A.; Vaikma, H.; Kriščiunaite, T.; Pismennõi, D.; Viiard, E. M. Chemical, and Sensorial Characterisation of Commercially Available Plant-Based Yoghurt Alternatives. Fut. Foods. 2023, 7, 100212. DOI: 10.1016/j.fufo.2022.100212.
  • Shah, N. P.; Lankaputhra, W. E. V.; Britz, M. L.; Kyle, W. S. A. Survival of Lactobacillus Acidophilus and Bifidobacterium Bifidum in Commercial Yoghurt During Refrigerated Storage. Int. Dairy. J. 1995, 5(5), 515–521. DOI: 10.1016/0958-6946(95)00028-2.
  • Dhakal, D.; Younas, T.; Bhusal, R. P.; Devkota, L.; Henry, C. J.; Dhital, S. Design Rules of Plant-Based Yoghurt-Mimic: Formulation, Functionality, Sensory Profile and Nutritional Value. Food Hydrocoll. 2023, 142, 108786. DOI: 10.1016/j.foodhyd.2023.108786.
  • Codex Alimentarius. Milk and Milk Products, 2nd ed.; United Nations, Rome: World Health Organization, Food and Agriculture Organization, 2010.
  • Soto, L. P.; Sirini, N. E.; Frizzo, L. S.; Zbrun, M. V.; Zimmermann, J. A.; Ruiz, M. J.; Rosmini, M. R.; Sequeira, G. J.; Miotti, C.; Signorini, M. L. Lactic Acid Bacteria Viability in Different Refrigerated Food Matrices: A Systematic Review and Meta‑Analysis. Crit. Rev. Food Sci. Nutr. 2022, 1–29. DOI: 10.1080/10408398.2022.2099807.
  • Angelov, A.; Gotcheva, V.; Hristozova, T.; Gargova, S. Application of Pure and Mixed Probiotic Lactic Acid Bacteria and Yeast Cultures for Oat Fermentation. J. Sci. Food Agric. 2005, 85(12), 2134–2141. DOI: 10.1002/jsfa.2223.
  • Shah, N. P. Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods. J. Dairy. Sci. 2000, 83(4), 894–907. DOI: 10.3168/jds.S0022-0302(00)74953-8.
  • Charalampopoulos, D.; Pandiella, S. S.; Webb, C. Growth Studies of Potentially Probiotic Lactic Acid Bacteria in Cereal‐Based Substrates. J. Appl. Microbiol. 2002, 92(5), 851–859. DOI: 10.1046/j.1365-2672.2002.01592.x.
  • Li, J.; Guo, M. Effects of Polymerized Whey Proteins on Consistency and Water-Holding Properties of Goat’s Milk Yogurt. J. Food Sci. 2006, 71(1), C34–C38. DOI: 10.1111/j.1365-2621.2006.tb12385.x.
  • Talwalkar, A.; Kailasapathy, K. The Role of Oxygen in the Viability of Probiotic Bacteria with Reference to L. Acidophilus and Bifidobacterium Spp. Curr. Issues Intest. Microbiol. 2004, 5(1), 1–8.
  • Talwalkar, A.; Miller, C. W.; Kailasapathy, K.; Nguyen, M. H. Effect of Packaging Materials and Dissolved Oxygen on the Survival of Probiotic Bacteria in Yoghurt. Int. J. Food Sci. Technol. 2004, 39(6), 605–611. DOI: 10.1111/j.1365-2621.2004.00820.x.
  • Ziarno, M.; Zaręba, D.; Dryzek, W.; Hassaliu, R.; Florowski, T. Effect of the Addition of Soy Beverage and Propionic Bacteria on Selected Quality Characteristics of Cow’s Milk Yoghurt Products. Appl. Sci. 2022, 12(24), 12603. DOI: 10.3390/app122412603.
  • Shori, A. B.; Baba, A. S. Viability of Lactic Acid Bacteria and Sensory Evaluation in Cinnamomum Verum and Allium Sativum-Bio-Yogurts Made from Camel and Cow Milk. J. Assoc. Arab Univ. Basic Appl. Sci. 2012, 11(1), 50–55. DOI: 10.1016/j.jaubas.2011.11.001.
  • Cichońska, P.; Ziębicka, A.; Ziarno, M. Properties of Rice-Based Beverages Fermented with Lactic Acid Bacteria and Propionibacterium. Molecules. 2022, 27(8), 2558. DOI: 10.3390/molecules27082558.
  • Tarnaud, F.; Gaucher, F.; Do Carmo, F. L. R.; Illikoud, N.; Jardin, J.; Briard-Bion, V.; Guyomarc’h, F.; Gagnaire, V.; Jan, G. Differential Adaptation of Propionibacterium Freudenreichii CIRM-BIA129 to Cow’s Milk versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Front. Microbiol. 2020, 11, 11. DOI: 10.3389/fmicb.2020.549027.
  • Gagnaire, V.; Thierry, A.; Léonil, J. Propionibacteria and Facultatively Heterofermentative Lactobacilli Weakly Contribute to Secondary Proteolysis of Emmental Cheese. Le Lait. 2001, 81(3), 339–353. DOI: 10.1051/lait:2001136.
  • Weber, M. H. W.; Marahiel, M. A. Bacterial Cold Shock Responses. Sci. Prog. 2003, 86(1–2), 9–75. DOI: 10.3184/003685003783238707.
  • Loux, V.; Mariadassou, M.; Almeida, S.; Chiapello, H.; Hammani, A.; Buratti, J.; Gendrault, A.; Barbe, V.; Aury, J.-M.; Deutsch, S.-M., et al. Mutations and Genomic Islands Can Explain the Strain Dependency of Sugar Utilization in 21 Strains of Propionibacterium Freudenreichii. BMC Genom. 2015, 16(1), 296. DOI: 10.1186/s12864-015-1467-7.
  • Mudgil, D.; Barak, S.; Khatkar, B. S. Texture Profile Analysis of Yogurt as Influenced by Partially Hydrolyzed Guar Gum and Process Variables. J. Food Sci. Technol. 2017, 54(12), 3810–3817. DOI: 10.1007/s13197-017-2779-1.
  • Demir, H.; Aydemir, L. Y.; Özel, M. Ş.; Koca, E.; Şimşek Aslanoğlu, M. Application of Plant-Based Proteins for Fortification of Oat Yogurt Storage Stability and Bioactivity. J. Food Sci. 2023, 88(10), 4079–4096. DOI: 10.1111/1750-3841.16729.
  • Bernat, N.; Cháfer, M.; González-Martínez, C.; Rodríguez-García, J.; Chiralt, A. Optimisation of Oat Milk Formulation to Obtain Fermented Derivatives by Using Probiotic Lactobacillus Reuteri Microorganisms. Food Sci. Technol. Int. 2015, 21(2), 145–157. DOI: 10.1177/1082013213518936.
  • Deswal, A.; Deora, N. S.; Mishra, H. N. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food Bioprocess. Technol. 2014, 7(2), 610–618. DOI: 10.1007/s11947-013-1144-2.
  • Yang, Z.; Xie, C.; Bao, Y.; Liu, F.; Wang, H.; Wang, Y. Oat: Current State and Challenges in Plant-Based Food Applications. Trends Food Sci. Technol. 2023, 134, 56–71. DOI: 10.1016/j.tifs.2023.02.017.
  • Demir, H.; Simsek, M.; Yıldırım, G. Effect of Oat Milk Pasteurization Type on the Characteristics of Yogurt. LWT. 2021, 135, 110271. DOI: 10.1016/j.lwt.2020.110271.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3.
  • Dong, J.; Yang, M.; Zhu, Y.; Shen, R.; Zhang, K. Comparative Study of Thermal Processing on the Physicochemical Properties and Prebiotic Effects of the Oat β-Glucan by in vitro Human Fecal Microbiota Fermentation. Food. Res. Int. 2020, 138, 109818. DOI: 10.1016/j.foodres.2020.109818.
  • Moghadam, B. E.; Hasebi, Z.; Seyfzadeh, S.; Talebi, V.; Keivaninahr, F.; Fouladi, M.; Mokarram, R. R. Barley β-Glucan for Conjugated Linoleic Acid (CLA) Production by Bifidobacterium Animalis Subsp. Lactis: Fatty Acid Variation and Bacterial Viability Study. Bioact. Carbohydr. Diet. Fibre. 2022, 28, 100321. DOI: 10.1016/j.bcdf.2022.100321.
  • Aryana, K. J.; Olson, D. W. A 100-Year Review: Yogurt and Other Cultured Dairy Products. J. Dairy. Sci. 2017, 100(12), 9987–10013. DOI: 10.3168/jds.2017-12981.
  • Gumus, C. E.; Gharibzahedi, S. M. T. Yogurts Supplemented with Lipid Emulsions Rich in Omega-3 Fatty Acids: New Insights into the Fortification, Microencapsulation, Quality Properties, and Health-Promoting Effects. Trends Food Sci. Technol. 2021, 110, 267–279. DOI: 10.1016/j.tifs.2021.02.016.
  • Patra, T.; Axel, C.; Rinnan, Å.; Olsen, K. The Physicochemical Stability of Oat-Based Drinks. J. Cereal Sci. 2022, 104, 103422. DOI: 10.1016/j.jcs.2022.103422.
  • McCann, T. H.; Fabre, F.; Day, L. M. Rheology and Storage Stability of Low-Fat Yoghurt Structured by Carrot Cell Wall Particles. Food. Res. Int. 2011, 44(4), 884–892. DOI: 10.1016/j.foodres.2011.01.045.
  • Rinaldoni, A. N.; Campderrós, M. E.; Pérez Padilla, A. Physico-Chemical and Sensory Properties of Yogurt from Ultrafiltreted Soy Milk Concentrate Added with Inulin. LWT - Food Sci. Technol. 2012, 45(2), 142–147. DOI: 10.1016/j.lwt.2011.09.009.
  • Pang, Z.; Xu, R.; Luo, T.; Che, X.; Bansal, N.; Liu, X. Physiochemical Properties of Modified Starch Under Yogurt Manufacturing Conditions and Its Relation to the Properties of Yogurt. J. Food Eng. 2019, 245, 11–17. DOI: 10.1016/j.jfoodeng.2018.10.003.
  • Lobato-Calleros, C.; Ramírez-Santiago, C.; Vernon-Carter, E. J.; Alvarez-Ramirez, J. Impact of Native and Chemically Modified Starches Addition as Fat Replacers in the Viscoelasticity of Reduced-Fat Stirred Yogurt. J. Food Eng. 2014, 131, 110–115. DOI: 10.1016/j.jfoodeng.2014.01.019.
  • Domagała, J.; Wszołek, M. Effect of Concentration Method and Starter Culture Type on the Texture and Susceptibility to Syneresis of Yoghurt and Bio-Yoghurts Made of Goat’s Milk | Polish Society of Food Technologists. Żywność Nauk Technol. Jakość. 2008, 6: 118–126.
  • Torre, L. L.; Tamime, A. Y.; Muir, D. D. Rheology and Sensory Profiling of Set-Type Fermented Milks Made with Different Commercial Probiotic and Yoghurt Starter Cultures. Int. J Dairy Technol. 2003, 56(3), 163–170. DOI: 10.1046/j.1471-0307.2003.00098.x.
  • Skogen, L. O.; Reinbold, G. W.; Vedamuthu, E. R. CAPSULATION of PROPIONIBACTERIUM1. J. Food Prot. 1974, 37(6), 314–321. DOI: 10.4315/0022-2747-37.6.314.
  • Ekinci, F. Y.; Barefoot, S. F. Fed-Batch Enhancement of Jenseniin G, a Bacteriocin Produced by Propionibacterium Thoenii (Jensenii) P126. Food Microbiol. 2006, 23(4), 325–330. DOI: 10.1016/j.fm.2005.05.012.
  • Ekinci, F. Y.; Gurel, M. Effect of Using Propionic Acid Bacteria as an Adjunct Culture in Yogurt Production. J. Dairy. Sci. 2008, 91(3), 892–899. DOI: 10.3168/jds.2007-0244.
  • Ares, G.; Gonçalvez, D.; Pérez, C.; Reolón, G.; Segura, N.; Lema, P.; Gámbaro, A. Influence of Gelatin and Starch on the Instrumental and Sensory Texture of Stirred Yogurt. Int. J Dairy Technol. 2007, 60(4), 263–269. DOI: 10.1111/j.1471-0307.2007.00346.x.
  • Considine, T.; Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J.; Kasapis, S. Rheological Investigations of the Interactions Between Starch and Milk Proteins in Model Dairy Systems: A Review. Food Hydrocoll. 2011, 25(8), 2008–2017. DOI: 10.1016/j.foodhyd.2010.09.023.
  • Vénica, C. I.; Wolf, I. V.; Suárez, V. B.; Bergamini, C. V.; Perotti, M. C. Effect of the Carbohydrates Composition on Physicochemical Parameters and Metabolic Activity of Starter Culture in Yogurts. LWT. 2018, 94, 163–171. DOI: 10.1016/j.lwt.2018.04.034.
  • Anbukkarasi, K.; UmaMaheswari, T.; Hemalatha, T.; Nanda, D. K.; Singh, P.; Singh, R. Preparation of Low Galactose Yogurt Using Cultures of Gal+streptococcus Thermophilus in Combination with Lactobacillus Delbrueckii Ssp. Bulgaricus. J. Food Sci. Technol. 2014, 51(9), 2183–2189. DOI: 10.1007/s13197-014-1262-5.
  • Zhang, S. S.; Xu, Z. S.; Qin, L. H.; Kong, J. Low-Sugar Yogurt Making by the Co-Cultivation of Lactobacillus Plantarum WCFS1 with Yogurt Starter Cultures. J. Dairy. Sci. 2020, 103(4), 3045–3054. DOI: 10.3168/jds.2019-17347.
  • Wu, Q. Q.; You, H. J.; Ahn, H. J.; Kwon, B.; Ji, G. E. Changes in Growth and Survival of Bifidobacterium by Coculture with Propionibacterium in Soy Milk, Cow’s Milk, and Modified MRS Medium. Int. J. Food Microbiol. 2012, 157(1), 65–72. DOI: 10.1016/j.ijfoodmicro.2012.04.013.