446
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gelatinization and fermentation synergy: investigating the protein digestibility, mineral bioaccessibility and microstructural transformations of black mash beans through Saccharomyces cerevisiae and Lactobacillus spp

, , , &
Pages 674-688 | Received 28 Dec 2023, Accepted 26 Apr 2024, Published online: 26 May 2024

References

  • Wani, I. A.; Sogi, D. S.; Gill, B. S. Physicochemical and Functional Properties of Flours from Three Black Gram (Phaseolus Mungo L.) Cultivars. Int. J. Food Sci. & Tech. 2013, 48(4), 771–777. DOI: 10.1111/ijfs.12025
  • De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Nutritional and Functional Effects of the Lactic Acid Bacteria Fermentation on Gelatinized Legume Flours. Int. J. Food Microbiol. 2020, 316, 108426. DOI: 10.1016/j.ijfoodmicro.2019.108426
  • Gómez, M.; Martínez, M. M. Changing Flour Functionality Through Physical Treatments for the Production of Gluten-Free Baking Goods. J. Cereal Sci. 2016, 67, 68–74. DOI: 10.1016/j.jcs.2015.07.009
  • Ali, S. A.; Saeed, S. M. G.; Ejaz, U.; Baloch, M. N.; Sohail, M. A Novel Approach to Improve the Nutritional Value of Black Gram (Vigna Mungo L.) by the Combined Effect of Pre-Gelatinization and Fermentation by Lactobacillus sp. E14 and Saccharomyces cerevisiae MK-157: Impact on Morphological, Thermal, and Chemical Structural Properties. LWT. 2022, 172, 114216.
  • Ali, S. A.; Saeed, S. M. G.; Sohail, M.; Elkhadragy, M. F.; Yehia, H. M.; Giuffrè, A. M. Functionalization of Pre-Gelatinized Urad Bean Fermented by Saccharomyces cerevisiae MK-157 As a Fat Replacer and Its Impact on Physico-Chemical, Micromorphology, Nutritional and Sensory Characteristics of Biscuits. Arabian J. Chem. 2023, 16(9), 105029. DOI: 10.1016/j.arabjc.2023.105029
  • Senanayake, D.; Torley, P. J.; Chandrapala, J.; Terefe, N. S. Microbial Fermentation for Improving the Sensory, Nutritional and Functional Attributes of Legumes. Fermentation. 2023, 9(7), 635. DOI: 10.3390/fermentation9070635
  • Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T., et al. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods. 2020, 10(1), 69.
  • Kouamé, C.; Loiseau, G.; Grabulos, J.; Boulanger, R.; Mestres, C. Development of a Model for the Alcoholic Fermentation of Cocoa Beans by a Saccharomyces cerevisiae Strain. Int. J. Food Microbiol. 2021, 337, 108917. DOI: 10.1016/j.ijfoodmicro.2020.108917
  • Manfredini, P. G.; Cavanhi, V. A. F.; Costa, J. A. V.; Colla, L. M. Bioactive Peptides and Proteases: Characteristics, Applications and the Simultaneous Production in Solid-State Fermentation. Biocatal. Biotransform. 2021, 39(5), 360–377. DOI: 10.1080/10242422.2020.1849151
  • Alrosan, M.; Tan, T.-C.; Mat Easa, A.; Gammoh, S.; Alu’datt, M. H.; Stankovic, M. Effects of Fermentation on the Quality, Structure, and Nonnutritive Contents of Lentil (Lens Culinaris) Proteins. J. Food Qual. 2021, 2021, 1–7. DOI: 10.1155/2021/5556450
  • Kumitch, H. M.; Stone, A.; Nosworthy, M. G.; Nickerson, M. T.; House, J. D.; Korber, D. R.; Tanaka, T. Effect of Fermentation Time on the Nutritional Properties of Pea Protein‐Enriched Flour Fermented by Aspergillus Oryzae and Aspergillus Niger. Cereal. Chem. 2020, 97(1), 104–113. DOI: 10.1002/cche.10234
  • Wu, H.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Mung Bean (Vigna Radiata) as Probiotic Food Through Fermentation with Lactobacillus Plantarum B1-6. LWT Food Sci. Technol. 2015, 63(1), 445–451. DOI: 10.1016/j.lwt.2015.03.011
  • Licandro, H.; Ho, P. H.; Nguyen, T. K. C.; Petchkongkaew, A.; Van Nguyen, H.; Chu-Ky, S.; Nguyen, T. V. A.; Lorn, D.; Waché, Y. How Fermentation by Lactic Acid Bacteria Can Address Safety Issues in Legumes Food Products? Food Cont. 2020, 110, 106957. DOI: 10.1016/j.foodcont.2019.106957
  • Lazo‐Vélez, M.; Serna‐Saldívar, S.; Rosales‐Medina, M.; Tinoco‐Alvear, M.; Briones‐García, M. Application of Saccharomyces cerevisiae Var. Boulardii in Food Processing: A Review. J. Appl. Microbiol. 2018, 125(4), 943–951. DOI: 10.1111/jam.14037
  • Girish, T.; Pratape, V.; Rao, U. P. Nutrient Distribution, Phenolic Acid Composition, Antioxidant and Alpha-Glucosidase Inhibitory Potentials of Black Gram (Vigna Mungo L.) and Its Milled By-Products. Food Res. Int. 2012, 46(1), 370–377. DOI: 10.1016/j.foodres.2011.12.026
  • Ladjal-Ettoumi, Y.; Boudries, H.; Chibane, M.; Romero, A. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophys. 2016, 11(1), 43–51. DOI: 10.1007/s11483-015-9411-6
  • He, F. Laemmli-sds-page. Bio-protocol. 2011, 1(11), e80–e80. DOI: 10.21769/BioProtoc.80
  • Li, W.; Wang, T. Effect of Solid-State Fermentation with Bacillus subtilis Lwo on the Proteolysis and the Antioxidative Properties of Chickpeas. Int. J. Food Microbiol. 2021, 338, 108988. DOI: 10.1016/j.ijfoodmicro.2020.108988
  • Almeida, C. C.; Monteiro, M. L. G.; da Costa-Lima, B. R. C.; Alvares, T. S.; Conte-Junior, C. A. In vitro Digestibility of Commercial Whey Protein Supplements. LWT Food Sci. Technol. 2015, 61(1), 7–11. DOI: 10.1016/j.lwt.2014.11.038
  • AOAC. Official Methods of Analysis of AOAC International, 16th ed; The Association: Gaithersburg, MD, 2012.
  • Dhull, S. B.; Punia, S.; Kumar, R.; Kumar, M.; Nain, K. B.; Jangra, K.; Chudamani, C. Solid State Fermentation of Fenugreek (Trigonella Foenum-Graecum): Implications on Bioactive Compounds, Mineral Content and in vitro Bioavailability. J. Food Sci. Technol. 2021, 58(5), 1927–1936. DOI: 10.1007/s13197-020-04704-y
  • Sadh, P. K.; Chawla, P.; Bhandari, L.; Kaushik, R.; Duhan, J. S. In vitro Assessment of Bio-Augmented Minerals from Peanut Oil Cakes Fermented by Aspergillus Oryzae Through Caco-2 Cells. J. Food Sci. Technol. 2017, 54(11), 3640–3649. DOI: 10.1007/s13197-017-2825-z
  • Torres, M. D.; Moreira, R.; Chenlo, F.; Morel, M. H.; Barron, C. Physicochemical and Structural Properties of Starch Isolated from Fresh and Dried Chestnuts and Chestnut Flour. Food Technol. Biotechnol. 2014, 52(1), 135–139.
  • Saeed, S. M. G.; Ali, S. A.; Ali, R.; Sayeed, S. A.; Mobin, L.; Ahmed, R. Exploring the Potential of Black Gram (Vigna Mungo) Flour as a Fat Replacer in Biscuits with Improved Physicochemical, Microstructure, Phytochemicals, Nutritional and Sensory Attributes. SN Appl. Sci. 2020, 2(12), 1–17. DOI: 10.1007/s42452-020-03797-6
  • Emkani, M.; Oliete, B.; Saurel, R. Effect of Lactic Acid Fermentation on Legume Protein Properties, a Review. Fermentation. 2022, 8(6), 244. DOI: 10.3390/fermentation8060244
  • Sirisena, S.; Chan, S.; Roberts, N.; Dal Maso, S.; Gras, S. L.; Martin, G. J. Influence of Yeast Growth Conditions and Proteolytic Enzymes on the Amino Acid Profiles of Yeast Hydrolysates: Implications for Taste and Nutrition. Food Chem. 2024, 437, 137906. DOI: 10.1016/j.foodchem.2023.137906
  • Liu, Y.; Danial, M.; Liu, L.; Sadiq, F. A.; Wei, X.; Zhang, G. Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread. Foods. 2023, 12(18), 3333. DOI: 10.3390/foods12183333
  • Yi-Shen, Z.; Shuai, S.; FitzGerald, R. Mung Bean Proteins and Peptides: Nutritional, Functional and Bioactive Properties. Food Nutr. Res. 2018, 62. DOI: 10.29219/fnr.v62.1290
  • Çabuk, B.; Nosworthy, M. G.; Stone, A. K.; Korber, D. R.; Tanaka, T.; House, J. D.; Nickerson, M. T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56(2), 257. DOI: 10.17113/ftb.56.02.18.5450
  • Jan, S.; Kumar, K.; Yadav, A. N.; Ahmed, N.; Thakur, P.; Chauhan, D.; Hyder Rizvi, Q. U. E.; Dhaliwal, H. S. Effect of Diverse Fermentation Treatments on Nutritional Composition, Bioactive Components, and Anti-Nutritional Factors of Finger Millet (Eleusine Coracana L.). J. App. Biol. Biotech. 2022, 10(1), 46–52. DOI: 10.7324/JABB.2022.10s107
  • Kumari, M.; Platel, K. Impact of Soaking, Germination, Fermentation, and Thermal Processing on the Bioaccessibility of Trace Minerals from Food Grains. J. Food Process. Preserv. 2020, 44(10), e14752. DOI: 10.1111/jfpp.14752
  • Mbaeyi Nwaoha, I.; Obetta, F. Production and Evaluation of Nutrient-Dense Complementary Food from Millet (Pennisetum Glaucum), Pigeon Pea (Cajanus Cajan) and Seedless Breadfruit (Artocarpus Altillis) Leaf Powder Blends. Afr. J. Food Sci. 2016, 10(9), 143–156. DOI: 10.5897/AJFS2015.1393
  • Dhull, S. B.; Punia, S.; Kidwai, M. K.; Kaur, M.; Chawla, P.; Purewal, S. S.; Sangwan, M.; Palthania, S. Solid-State Fermentation of Lentil (Lens Culinaris L.) with Aspergillus Awamori: Effect on Phenolic Compounds, Mineral Content, and Their Bioavailability. Legume Sci. 2020, 2(3), e37. DOI: 10.1002/leg3.37
  • Kiewlicz, J.; Rybicka, I. Minerals and Their Bioavailability in Relation to Dietary Fiber, Phytates and Tannins from Gluten and Gluten-Free Flakes. Food Chem. Feb 1, 2020, 305, 125452. DOI: 10.1016/j.foodchem.2019.125452
  • Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M. E.; Grauwet, T. Barriers Impairing Mineral Bioaccessibility and Bioavailability in Plant-Based Foods and the Perspectives for Food Processing. Crit. Rev. Food Sci. Nutr. 2020, 60(5), 826–843. DOI: 10.1080/10408398.2018.1552243
  • Ray, R. C.; Didier, M. Microorganisms and Fermentation of Traditional Foods; CRC Press, 2014. DOI: 10.1201/b17307
  • Zhang, H.; Wang, R.; Chen, Z.; Zhong, Q. Enzymatically Modified Starch with Low Digestibility Produced from Amylopectin by Sequential Amylosucrase and Pullulanase Treatments. Food Hydrocolloids. 2019, 95, 195–202. DOI: 10.1016/j.foodhyd.2019.04.036
  • Ma, Z.; Boye, J. I.; Hu, X. Nutritional Quality and Techno-Functional Changes in Raw, Germinated and Fermented Yellow Field Pea (Pisum Sativum L.) Upon Pasteurization. LWT. 2018, 92, 147–154. DOI: 10.1016/j.lwt.2018.02.018
  • Sozer, N.; Melama, L.; Silbir, S.; Rizzello, C. G.; Flander, L.; Poutanen, K. Lactic Acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and Its Effect on Textural, Structural and Nutritional Properties of Protein-Enriched Gluten-Free Faba Bean Breads. Foods. 2019, 8(10), 431. DOI: 10.3390/foods8100431
  • Awolu, O. O.; Ojewumi, M. E.; Isa, J.; Ojo, D. O.; Olofin, H. I.; Jegede, S. O.; Yildiz, F. Comparative Analyses of Functional, Pasting and Morphological Characteristics of Native and Modified Tigernut Starches with Their Blends. Cogent. Food Agric. 2017, 3(1), 1306934. DOI: 10.1080/23311932.2017.1306934
  • Yakubu, C. M.; Sharma, R.; Sharma, S. Fermentation of Locust Bean (Parkia Biglobosa): Modulation in the Anti‐Nutrient Composition, Bioactive Profile, in vitro Nutrient Digestibility, Functional and Morphological Characteristics. Int. J. Food Sci. & Tech. 2022, 57(2), 753–762. DOI: 10.1111/ijfs.15288
  • Toor, B. S.; Kaur, A.; Kaur, J. Fermentation of Legumes with Rhizopus Oligosporus: Effect on Physicochemical, Functional and Microstructural Properties. Int. J. Food Sci. & Tech. 2022, 57(3), 1763–1772. DOI: 10.1111/ijfs.15552
  • Christensen, L. F.; García-Béjar, B.; Bang-Berthelsen, C. H.; Hansen, E. B. Extracellular Microbial Proteases with Specificity for Plant Proteins in Food Fermentation. Int. J. Food Microbiol. 2022, 381, 109889. DOI: 10.1016/j.ijfoodmicro.2022.109889
  • Rizzello, C. G.; Verni, M.; Koivula, H.; Montemurro, M.; Seppa, L.; Kemell, M., et al. Influence of Fermented Faba Bean Flour on the Nutritional, Technological and Sensory Quality of Fortified Pasta. Food Funct. 2017, 8(2), 860–871.
  • Liu, Y.; Zhu, S.; Li, Y.; Sun, F.; Huang, D.; Chen, X. Alternations in the Multilevel Structures of Chickpea Protein During Fermentation and Their Relationship with Digestibility. Food Res. Int. 2023, 165, 112453. DOI: 10.1016/j.foodres.2022.112453
  • García Arteaga, V.; Demand, V.; Kern, K.; Strube, A.; Szardenings, M.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Enzymatic Hydrolysis and Fermentation of Pea Protein Isolate and Its Effects on Antigenic Proteins, Functional Properties, and Sensory Profile. Foods. 2022, 11(1), 118. DOI: 10.3390/foods11010118