213
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in the quality and antioxidant capacity of Msalais during storage

, , & ORCID Icon
Pages 858-869 | Received 20 Oct 2023, Accepted 05 Jun 2024, Published online: 22 Jun 2024

References

  • Zhu, L.; Wang, L.; Yang, W.; Guo, D. Physicochemical Data Mining of Msalais, a Traditional Local Wine in Southern Xinjiang of China. Int. J. Food. Prop. 2016, 19(11), 2385–2395. DOI: 10.1080/10942912.2015.1033549.
  • Guo, D. L.; Zhang, J. Y.; Liu, C. H. Genetic Diversity in Some Grape Varieties Revealed by ScoT Analyses. Mol. Biol. Rep. 2012, 39(5), 5307–5313. DOI: 10.1007/s11033-011-1329-6.
  • Zhu, L.-X.; Zhang, M.-M.; Shi, Y.; Duan, C.-Q. Evolution of the Aromatic Profile of Traditional Msalais Wine During Industrial Production. Int. J. Food. Prop. 2019, 22(1), 911–924. DOI: 10.1080/10942912.2019.1612428.
  • Zhu, L.-X.; Wang, H.; Zhang, M.-M.; Shi, Y.; Xiang, X.-F.; Lan, Y.-B.; Zhang, R.-L. Aromatic and Chemical Differences Between Msalais Wines Produced at Traditional Craft Workshops and Modern Plants. J. Food Compost. Anal. 2023, 116, 1–12. DOI: 10.1016/j.jfca.2022.105029.
  • Yuanqing, Z. Design of an Annual Production Capacity of 500 Tons of Moussaires Wine Factory [D]; Tarim University: Alar, 2021.
  • Xiaojie, H.; Study on Brewing Technology of Low Foaming Moussales [D]; Tarim University: Alar, Xinjiang; 2021.
  • Zhu, L.-X.; Wang, G.-Q.; Xue, J.-L.; Gou, D.-Q.; Duan, C.-Q. Direct Stamp of Technology or Origin on the Genotypic and Phenotypic Variation of Indigenous Saccharomyces cerevisiae Population in a Natural Model of Boiled Grape Juice Fermentation into Traditional Msalais Wine in China. FEMS Yeast Res. 2017, 17, 108. DOI: 10.1093/femsyr/fow108.
  • Jiabin, Z.; Guanqun, W.; Tongguo, C.; Quan, M.; Lixia, Z. Laboratory-Scale Development of Combined Starter for Msalais Production. China Brew 2017, 36, 115–120.
  • Zhu, L.; Xue, J. Modern Technology Homogenizes Enological Traits of Indigenous Saccharomyces cerevisiae Strains Associated with Msalais, a Traditional Wine in China. World J. Microbiol. Biotechnol. 2017, 33(3), 63. DOI: 10.1007/s11274-017-2227-4.
  • Zhu, L.-X.; Zhang, M.-M.; Liu, Z.; Shi, Y.; Duan, C.-Q. Levels of Furaneol in Msalais Wines: A Comprehensive Overview of Multiple Stages and Pathways of Its Formation During Msalais Winemaking. Molecules. 2019, 24(17), 3104. DOI: 10.3390/molecules24173104.
  • Zhu, L.-X.; Zhang, M.-M.; Xiang, X.-F.; Lan, Y.-B.; Shi, Y.; Duan, C.-Q.; Zhang, R.-L. Aromatic Characterization of Traditional Chinese Wine Msalais by Partial Least-Square Regression Analysis Based on Sensory Quantitative Descriptive and Odor Active Values, Aroma Extract Dilution Analysis, and Aroma Recombination and Omission Tests. Food Chem. 2021, 361, 129781. DOI: 10.1016/j.foodchem.2021.129781.
  • Zhu, L.-X.; Hui, W.; Han, P.-J.; Lan, Y.-B. Identification of Dominant Functional Microbes That Contribute to the Characteristic Aroma of Msalais, Traditional Wine Fermented from Boiled Local Grape Juice in China. Food Chem. 2023, 100778, 2590–1575. DOI: 10.1016/j.fochx.2023.100778.
  • Hou, X.; Chen, S.; Pu, Y.; Wang, T.; Xu, H.; Li, H.; Ma, P.; Hou, X. Effect of Winemaking on Phenolic Compounds and Antioxidant Activities of Msalais Wine. Molecules. 2023, 28(3), 1250. DOI: 10.3390/molecules28031250.
  • Wang, W.; Han, Z.; Guo, D.; Xiang, Y. Renal Transcriptomics Reveals the Carcinogenic Mechanism of Ethyl Carbamate in Musalais. OncoTargets Ther. 2021, 14, 1401–1416. DOI: 10.2147/OTT.S282125.
  • Boerzhijin, S.; Isogai, A.; Mukai, N. Impact of Storage Conditions on the Volatile Aroma Compounds of Aged Sake. J. Food Compost. Anal. 2023, 121(105351), 0889–1575. DOI: 10.1016/j.jfca.2023.105351.
  • Romina Castellanos, E.; Jofre, V. P.; Fanzone, M. L.; Assof, M. V.; Catania, A. A.; Mariela Diaz-Sambueza, A.; Heredia, F. J.; Mercado, L. A. Effect of Different Closure Types and Storage Temperatures on the Color and Sensory Characteristics Development of Argentinian Torrontes Riojano White Wines Aged in Bottles. Food Control. 2021, 130, 0956–7135. DOI: 10.1016/j.foodcont.2021.108343.
  • Avizcuri, J. M.; Sáenz-Navajas, M. P.; Echávarri, J. F.; Ferreira, V.; Fernández-Zurbano, P. Evaluation of the Impact of Initial Red Wine Composition on Changes in Color and Anthocyanin Content During Bottle Storage. Food Chem. 2016, 213, 123–134. DOI: 10.1016/j.foodchem.2016.06.050.
  • Curko, N.; Ganić, K. K.; Tomašević, M.; Gracin, L.; Jourdes, M.; Teissedre, P. L. Effect of Enological Treatments on Phenolic and Sensory Characteristics of Red Wine During Aging: Micro-Oxygenation, Sulfur Dioxide, Iron with Copper and Gelatin Fining. Food Chem. 2021, 339, 339. DOI: 10.1016/j.foodchem.2020.127848.
  • Ortega-Heras, M.; González-Sanjosé, M. L.; González-Huerta, C. Consideration of the Influence of Aging Process, Type of Wine and Oenological Classic Parameters on the Levels of Wood Volatile Compounds Present in Red Wines. Food Chem. 2007, 103(4), 1434–1448. DOI: 10.1016/j.foodchem.2006.10.060.
  • Coetzee, C.; Oxidation Treatments Affecting Sauvignon Blanc Wine Sensory and Chemical Composition [D]; Stellenbosch University: Stellenbosch, Western Cape; 2014.
  • Coetzee, C.; Van Wyngaard, E.; Suklje, K.; Silva Ferreira, A. C.; Du Toit, W. J. Chemical and Sensory Study on the Evolution of Aromatic and Nonaromatic Compounds During the Progressive Oxidative Storage of a Sauvignon Blanc Wine. J. Agric. Food Chem. 2016, 64(42), 7979–7993. DOI: 10.1021/acs.jafc.6b02174.
  • Styger, G.; Prior, B.; Bauer, F. F.; Wine Flavor and Aroma. J. Ind. Microbiol. Biotechnol. 2011, 38(9), 1145. DOI: 10.1007/s10295-011-1018-4.
  • Cejudo-Bastante, M. J.; Hermosín‐Gutiérrez, I.; Pérez‐Coello, M. S. Accelerated Aging Against Conventional Storage: Effects on the Volatile Composition of Chardonnay White Wines. J. Food Sci. 2013, 78(4), 507–513. DOI: 10.1111/1750-3841.12077.
  • Hopfer, H.; Ebeler, S. E.; Heymann, H. The Combined Effects of Storage Temperature and Packaging Type on the Sensory and Chemical Properties of Chardonnay. J. Agric. Food Chem. 2012, 60(43), 10743–10754. DOI: 10.1021/jf302910f.
  • Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M. A.; Simal-Gandara, J. Bottle Aging and Storage of Wines: A Review. Molecules 2021, 26(3), 713. DOI: 10.3390/molecules26030713.
  • General Administration of Quality Supervision, Inspection and Quarantine of the China, Standardization Administration of China. GB/T 15038-2006. Bibliographic Description Rules for Bibliographic References [S]; China Light Industry Press: Beijing, 2006.
  • Shenghuizi, C.; Study on Physicochemical Quality and Characteristic Flavor of Musalais in Xinjiang [D]; Tarim University: Alar, Xinjiang; 2022.
  • Liu, W.; Ji, R.; Aimaier, A.; Sun, J.; Pu, X.; Shi, X. Weidong Cheng, Bin Wang, Adjustment of Impact Phenolic Compounds, Antioxidant Activity and Aroma Profile in Cabernet Sauvignon Wine by Mixed Fermentation of Pichia kudriavzevii and Saccharomyces cerevisiae. Food Chem. 2023, 18, 2590–1575. DOI: 10.1016/j.fochx.2023.100685.
  • Shopska, V.; Kostova, R. D.; Zarcheva, M. D.; Teneva, D.; Denev, P.; Kostov, G. Comparative Study on Phenolic Content and Antioxidant Activity of Different Malt Types. Antioxidants. 2021, 10(7), 1124. DOI: 10.3390/antiox10071124.
  • Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S. I.; Chun, O. K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Compost. Anal. 2011, 24(7), 1043–1048. DOI: 10.1016/j.jfca.2011.01.008.
  • Yu, Z.; Electronic Nose and GC-MS Techniques Were Used to Study the Changes of Aroma Substances in Musalais Q8 Wine [D]; Tarim University: Alar, Xinjiang; 2017.
  • Tyl, C.; Sadler, G. PH and Titratable Acidity. In Food Analysis. Food Science Text Series, Nielsen, S., Ed. Springer: Cham, 2017; pp. 389–406.
  • Coelho, E. M.; da Silva Padilha, C. V.; Miskinis, G. A.; de Sá, A. G. B.; Pereira, G. E.; de AzevêAzevêDo, L. C.; dos Santos Lima, M. Simultaneous Analysis of Sugars and Organic Acids in Wine and Grape Juices by HPLC: Method Validation and Characterization of Products from Northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. DOI: 10.1016/j.jfca.2017.12.017.
  • Nemo, R.; Bacha, K. Microbial, Physicochemical and Proximate Analysis of Selected Ethiopian Traditional Fermented Beverages. LWT - Food Sci. Technol. 2020, 131, 1–7. DOI: 10.1016/j.lwt.2020.109713.
  • Huang, Z.-R.; Guo, W.-L.; Zhou, W.-B.; Li, L.; Xu, J.-X.; Hong, J.-L.; Lv, X.-C.; Zeng, F.; Bai, W.-D.; Liu, B. Microbial Communities and Volatile Metabolites in Different Traditional Fermentation Starters Used for Hong Qu Glutinous Rice Wine. Food Res. Int. 2019, 121, 593–603. DOI: 10.1016/j.foodres.2018.12.024.
  • Generalić Mekinić, I. G.; Skračić, Z.; Kokeza, A.; Soldo, B.; Ljubenkov, I.; Banović, M.; Šimat, V.; Skroza, D. Effect of Enzyme-Assisted Vinification on Wine Phenolics, Colour Components, and Antioxidant Capacity. Pol. J. Food Nutr. Sci. 2020, 70(2), 113–123. DOI: 10.31883/pjfns/115461.
  • Danila. The Antioxidant Capacity of Red Wine in Relationship with Its Polyphenolic Constituents. Food Chem. 2008, 111, 45–49. DOI: 10.1016/j.foodchem.2008.03.037.
  • Angeles, M. A.; Dominguez, C. Determination of Antioxidant Power of Red and White Wines by a New Electrochemical Method and Its Correlation with Polyphenolic Content. J. Agric. Food Chem. 2002, 50(11), 3112–3115. DOI: 10.1021/jf0116101.
  • Liqiong, C.; Dynamic Changes of Main Physical and Chemical Indexes and Antioxidant Activity of Wine During Q10 Storage [D]; Lanzhou University of Technology: Lanzhou, Gansu; 2016.
  • Mulero, J.; Pardo, F.; Zafrilla, P. Effect of Principal Polyphenolic Components in Relation to Antioxidant Activity in Conventional and Organic Red Wines During Storage.European. Food Res. Technol. 2009, 229(5), 807–812. DOI: 10.1007/s00217-009-1117-x.
  • Pati, S.; Crupi, P.; Savastano, M.; Benucci, I.; Esti, M. Evolution of Phenolic and Volatile Compounds During Bottle Storage of a White Wine without Added Sulfite. J. Sci. Food Agric. 2019, 100(2), 775–784. DOI: 10.1002/jsfa.10084.
  • Arnous, A.; Makris, D. P.; Kefalas, P. Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. J. Agric. Food. Chem. 2001, 49(12), 5736–5742. DOI: 10.1021/jf010827s.
  • Zhang, H.; Yang, Y.-F.; Zhou, Z.-Q. Phenolic and Flavonoid Contents of Mandarin (Citrus Reticulata Blanco) Fruit Tissues and Their Antioxidant Capacity as Evaluated by DPPH and ABTS Methods. J. Integr. Agric. 2018, 17(1), 256–263. DOI: 10.1016/S2095-3119(17)61664-2.
  • Zhang, H.; Xi, W. P.; Yang, Y. F.; Zhou, X. Y.; Liu, X.; Yin, S. S.; Zhang, J. M.; Zhou, Z. Q. An On-Line HPLC-FRSD System for Rapid Evaluation of the Total Antioxidant Capacity of Citrus Fruits. Food Chem. 2015, 172, 622–629. DOI: 10.1016/j.foodchem.2014.09.121.
  • Moreira, N.; Lopes, P.; Ferreira, H.; Cabral, M.; de Pinho, P. G. Influence of Packaging and Aging on the Red Wine Volatile Composition and Sensory Attributes. Food Pack. Shelf Life 2016, 8, 14–23. DOI: 10.1016/j.fpsl.2016.02.005.
  • Rapp, A.; Mandery, H. Wine Aroma. Experientia. 1986, 42(8), 873–884. DOI: 10.1007/BF01941764.
  • Ramey, D. D.; Ough, C. S. Volatile Esters Hydrolysis or Formation During Storage of Model Solutions and Wines. J. Agric. Food Chem. 1980, 28(5), 928–934. DOI: 10.1021/jf60231a021.