208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Growth of Cordyceps militaris cultivation and its bioactive component accumulation as affected by various single-wavelength light-emitting diodes (LED) light sources

, , , , &
Pages 897-908 | Received 20 Nov 2023, Accepted 05 Jun 2024, Published online: 29 Jun 2024

References

  • Chen, B.-Y.; Huang, H.-S.; Tsai, K.-J.; Wu, J.-L.; Chang, Y.-T.; Chang, M.-C.; Lu, C.-M.; Yang, S.-L.; Huang, H.-S. Protective Effect of a Water-Soluble Carotenoid-Rich Extract of Cordyceps Militaris Against Light-Evoked Functional Vision Deterioration in Mice. Nutrients 2022, 14(8), 1675. DOI: 10.3390/nu14081675.
  • Nxumalo, W.; Elateeq, A. A.; Sun, Y. Can Cordyceps Cicadae Be Used as an Alternative to Cordyceps Militaris and Cordyceps sinensis? – a Review. J. Ethnopharmacol. 2020, 257, 112879. DOI: 10.1016/j.jep.2020.112879.
  • Duan, X.; Yang, H.; Wang, C.; Liu, H.; Lu, X.; Tian, Y. Microbial Synthesis of Cordycepin, Current Systems and Future Perspectives. Trends Food Sci. Technol. 2023, 132, 162–170. DOI: 10.1016/j.tifs.2023.01.006.
  • Phull, A.-R.; Ahmed, M.; Park, H.-J. Cordyceps Militaris As a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms. 2022, 10(2), 405. DOI: 10.3390/microorganisms10020405.
  • Liu, W.; Dun, M.; Liu, X.; Zhang, G.; Ling, J. Effects on Total Phenolic and Flavonoid Content, Antioxidant Properties, and Angiotensin I-Converting Enzyme Inhibitory Activity of Beans by Solid-State Fermentation with Cordyceps Militaris. Int. J. Food Prop. 2022, 25(1), 477–491. DOI: 10.1080/10942912.2022.2048009.
  • Wu, C.-Y.; Liang, C.-H.; Liang, Z.-C. Enhanced Production of Fruiting Bodies and Bioactive Compounds of Cordyceps Militaris with Grain Substrates and Cultivation Patterns. J. Taiwan Inst. Chem. Eng. 2022, 132, 104138. DOI: 10.1016/j.jtice.2021.11.005.
  • Long, L.; Liu, Z.; Wang, Y.; Lin, Q.; Ding, S.; Li, C.; Deng, C. High-Level Production of Cordycepin by the Xylose-Utilising Cordyceps Militaris Strain 147 in an Optimised Medium. Bioresour. Technol. 2023, 388, 129742. DOI: 10.1016/j.biortech.2023.129742.
  • Raethong, N.; Thananusak, R.; Cheawchanlertfa, P.; Prabhakaran, P.; Rattanaporn, K.; Laoteng, K.; Koffas, M.; Vongsangnak, W. Functional Genomics and Systems Biology of Cordyceps Species for Biotechnological Applications. Curr. Opin. Biotechnol. 2023, 81, 102939. DOI: 10.1016/j.copbio.2023.102939.
  • Cao, C.; Yang, S.; Zhou, Z. The Potential Application of Cordyceps in Metabolic-Related Disorders. Phytotherapy Res. 2020, 34(2), 295–305. DOI: 10.1002/ptr.6536.
  • Lin, S.-P.; Sung, T.-H.; Angkawijaya, A. E.; Go, A. W.; Hsieh, C.-W.; Hsu, H.-Y.; Santoso, S. P.; Cheng, K.-C. Enhanced Exopolysaccharide Production of Cordyceps Militaris via Mycelial Cell Immobilization on Plastic Composite Support in Repeated-Batch Fermentation. Int. J. Biol. Macromol. 2023, 250, 126267. DOI: 10.1016/j.ijbiomac.2023.126267.
  • Zhang, J.; Jian, T.; Zhang, Y.; Zhang, G.; Ling, J. Dynamic Content Changes of Cordycepin and Adenosine and Transcriptome in Cordyceps Kyushuensis Kob at Different Fermentation Stages. Bioprocess Biosyst. Eng. 2021, 44(8), 1793–1803. DOI: 10.1007/s00449-021-02561-3.
  • Hamedalla, A. M.; Ali, M. M.; Ali, W. M.; Ahmed, M. A. A.; Kaseb, M. O.; Kalaji, H. M.; Gajc-Wolska, J.; Yousef, A. F. Increasing the Performance of Cucumber (Cucumis Sativus L.) Seedlings by LED Illumination. Sci. Rep. 2022, 12(1), 852. DOI: 10.1038/s41598-022-04859-y.
  • Wu, M.-C.; Hou, C.-Y.; Jiang, C.-M.; Wang, Y.-T.; Wang, C.-Y.; Chen, H.-H.; Chang, H.-M. A Novel Approach of LED Light Radiation Improves the Antioxidant Activity of Pea Seedlings. Food Chem. 2007, 101(4), 1753–1758. DOI: 10.1016/j.foodchem.2006.02.010.
  • Yi, Z.-L.; Huang, W.-F.; Ren, Y.; Onac, E.; Zhou, G.-F.; Peng, S.; Wang, X.-J.; Li, H.-H. LED Lights Increase Bioactive Substances at Low Energy Costs in Culturing Fruiting Bodies of Cordyceps Militaris. Sci. Hortic. 2014, 175, 139–143. DOI: 10.1016/j.scienta.2014.06.006.
  • Schubert, E. F.; Kim, J. K. Solid-State Light Sources Getting Smart. Science. 2005, 308(5726), 1274–1278. DOI: 10.1126/science.1108712.
  • Kho, C.-H.; Kan, S.-C.; Chang, C.-Y.; Cheng, H.-Y.; Lin, C.-C.; Chiou, P.-C.; Shieh, C.-J.; Liu, Y.-C. Analysis of Exopolysaccharide Production Patterns of Cordyceps Militaris Under Various Light-Emitting Diodes. Biochem. Eng. J. 2016, 112, 226–232. DOI: 10.1016/j.bej.2016.04.028.
  • Feng, Y.; Xu, H.; Sun, Y.; Xia, R.; Hou, Z.; Li, Y.; Wang, Y.; Pan, S.; Li, L.; Zhao, C., et al. Effect of Light on Quality of Preharvest and Postharvest Edible Mushrooms and Its Action Mechanism: A Review. Trends Food Sci. Technol. 2023, 139, 104119. DOI: 10.1016/j.tifs.2023.104119.
  • In-On, A.; Thananusak, R.; Ruengjitchatchawalya, M.; Vongsangnak, W.; Laomettachit, T. Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in Cordyceps Militaris. Biology. 2022, 11(1), 71. DOI: 10.3390/biology11010071.
  • Yu, Z.; Fischer, R. Light Sensing and Responses in Fungi. Nat. Rev. Microbiol. 2019, 17(1), 25–36. DOI: 10.1038/s41579-018-0109-x.
  • Feng, Y.-J.; Zhu, Y.; Li, Y.-M.; Li, J.; Sun, Y.-F.; Shen, H.-T.; Wang, A.-Y.; Lin, Z.-P.; Zhu, J.-B. Effect of Strain Separated Parts, Solid-State Substrates and Light Condition on Yield and Bioactive Compounds of Cordyceps Militaris Fruiting Bodies. CyTA - J. Food. 2018, 16(1), 916–922. DOI: 10.1080/19476337.2018.1498130.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72(1), 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Li, P.-H.; Shih, Y.-J.; Lu, W.-C.; Huang, P.-H.; Wang, C.-C. R. Antioxidant, Antibacterial, Anti-Inflammatory, and Anticancer Properties of Cinnamomum Kanehirae Hayata Leaves Extracts. Arabian J. Chem. 2023, 16(7), 104873. DOI: 10.1016/j.arabjc.2023.104873.
  • Nielsen, S. Total Carbohydrate by Phenol-Sulfuric Acid Method. In Food Analysis Laboratory Manual, Nielsen, S. S., Ed.; Springer International Publishing: Cham, Schweiz, 2017; pp 137–141.
  • Liu, J.; Liu, B.; Xue, Q.; Zhang, H.; Xue, Z.; Qian, K.; Zhang, J.; Jin, Y.; Han, J.; Zhu, C. Analysis of Appearance and Active Substances of Cordyceps Militaris Stromata on Antheraea Pernyi Pupae After Optimization. Food Sci. Technol. 2023, 43, 43. DOI: 10.1590/fst.127022.
  • Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and Antibacterial Activity of Seven Predominant Terpenoids. Int. J. Food Prop. 2019, 22(1), 230–238. DOI: 10.1080/10942912.2019.1582541.
  • Huang, P.-H.; Lu, H.-T.; Wang, Y.-T.; Wu, M.-C. Antioxidant Activity and Emulsion-Stabilizing Effect of Pectic Enzyme Treated Pectin in Soy Protein Isolate-Stabilized Oil/Water Emulsion. J. Agric. Food Chem. 2011, 59(17), 9623–9628. DOI: 10.1021/jf202020t.
  • Chiang, S.-S.; Liang, Z.-C.; Wang, Y.-C.; Liang, C.-H. Effect of Light-Emitting Diodes on the Production of Cordycepin, Mannitol and Adenosine in Solid-State Fermented Rice by Cordyceps Militaris. J. Food Compost. Anal. 2017, 60, 51–56. DOI: 10.1016/j.jfca.2017.03.007.
  • Wu, C. Y.; Liang, Z. C.; Tseng, C. Y.; Hu, S. H. Effects of Illumination Pattern During Cultivation of Fruiting Body and Bioactive Compound Production by the Caterpillar Medicinal Mushroom, Cordyceps Militaris (Ascomycetes). Int. J. Med. Mushrooms. 2016, 18(7), 589–597. DOI: 10.1615/intjmedmushrooms.v18.i7.40.
  • Dong, J. Z.; Lei, C.; Zheng, X. J.; Ai, X. R.; Wang, Y.; Wang, Q. Light Wavelengths Regulate Growth and Active Components of Cordyceps Militaris Fruit Bodies. J. Food Biochem. 2013, 37(5), 578–584. DOI: 10.1111/jfbc.12009.
  • Wang, J.; Kan, L.; Nie, S.; Chen, H.; Cui, S. W.; Phillips, A. O.; Phillips, G. O.; Li, Y.; Xie, M. A Comparison of Chemical Composition, Bioactive Components and Antioxidant Activity of Natural and Cultured Cordyceps Sinensis. LWT - Food Sci. Technol. 2015, 63(1), 2–7. DOI: 10.1016/j.lwt.2015.03.109.
  • Seelarat, W.; Sangwanna, S.; Panklai, T.; Chaosuan, N.; Bootchanont, A.; Wattanawikkam, C.; Subcharoen, A.; Subcharoen, N.; Chanchula, N.; Boonyawan, D., et al. Enhanced Fruiting Body Production and Bioactive Phytochemicals from White Cordyceps Militaris by Blending Cordyceps Militaris and Using Cold Plasma Jet. Plasma Chem. Plasma Process. 2023, 43(1), 139–162. DOI: 10.1007/s11090-022-10292-w.
  • Huang, Z.-Y.; Feng, L.; Fu, M.-J.; Zhang, D.-D. Differential Ubiquitome Analysis of Cordyceps Militaris Lysine-Ubiquitinated Proteins Affected by Blue Light. Biologia. 2022, 77(7), 1965–1979. DOI: 10.1007/s11756-022-01064-0.
  • Eiamthaworn, K.; Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Cordyceps Militaris Extracts Against Some Skin Pathogenic Bacteria and Antioxidant Activity. J. Fungi (Basel) 2022, 8(4), 327. DOI: 10.3390/jof8040327.
  • Huang, T.; Zhou, Y.; Lu, X.; Tang, C.; Ren, C.; Bao, X.; Deng, Z.; Cao, X.; Zou, J.; Zhang, Q., et al. Cordycepin, a Major Bioactive Component of Cordyceps militaris, Ameliorates Diabetes-Induced Testicular Damage Through the Sirt1/Foxo3a Pathway. Andrologia 2022, 54(1), e14294. DOI: 10.1111/and.14294.
  • Li, X. T.; Li, H. C.; Li, C. B.; Dou, D. Q.; Gao, M. B. Protective Effects on Mitochondria and Anti-Aging Activity of Polysaccharides from Cultivated Fruiting Bodies of Cordyceps Militaris. Am. J. Chin. Med. 2010, 38(6), 1093–1106. DOI: 10.1142/s0192415x10008494.
  • Gu, C.; Zhang, D.; Zhai, W.; Zhang, H.; Wang, S.; Lv, S.; Bao, Y.; Zhu, D.; Feng, S.; Guo, S., et al. Research Progress on Cordyceps Militaris Polysaccharides. Food Biosci. 2022, 45, 101503. DOI: 10.1016/j.fbio.2021.101503.