1,157
Views
7
CrossRef citations to date
0
Altmetric
Articles

Between Counting and Multiplication: Low-Attaining Students’ Spatial Structuring, Enumeration and Errors in Concretely-Presented 3D Array Tasks

References

  • Anghileri, J. (1989). An investigation of young children’s understanding of multiplication. Educational Studies in Mathematics, 20(4), 367–385. doi:10.1007/BF00315607
  • Anghileri, J. (1995). Children’s finger methods for multiplication. Mathematics in School, 24(1), 40–42.
  • Anghileri, J. (1997). Uses of counting in multiplication and division. In I. Thompson (Ed.), Teaching and learning early number (pp. 41–51). Maidenhead, UK: Open University Press.
  • Baroody, A. J. (1988). Mental-addition development of children classified as mentally handicapped. Educational Studies in Mathematics, 19(3), 369–388. doi:10.1007/BF00312453
  • Baroody, A. J., & Tiilikainen, S. H. (2003). Two perspectives on addition development. In A. J. Baroody & A. Dowker (Eds.),The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 75–125). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Battista, M. T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based classroom. Journal for Research in Mathematics Education, 30(4), 417–448. doi:10.2307/749708
  • Battista, M. T. (2010). Thoughts on elementary students’ reasoning about 3D arrays of cubes and polyhedra. In Z. Usiskin, K. Andersen, & N. Zotto (Eds.), Future curricular trends in school algebra and geometry: Proceedings of a conference (pp. 183–202). Charlotte, NC: Information Age.
  • Battista, M. T., & Clements, D. H. (1995). Enumerating cubes in 3-D arrays: Students’ strategies and instructional progress. Proceedings of the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 192–198). Columbus, OH: ERIC Clearing House for Science, Mathematics, and Environmental Education.
  • Battista, M. T., & Clements, D. H. (1996). Students’ understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258–292. doi:10.2307/749365
  • Battista, M. T., & Clements, D. H. (1998). Students’ understanding of three-dimensional cube arrays: Findings from a research and curriculum development project. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 227–248). London, UK: Routledge.
  • Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. A. (1998). Students’ spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29(5), 503–532. doi:10.2307/749731
  • Ben-Haim, D., Lappan, G., & Houang, R. T. (1985). Visualizing rectangular solids made of small cubes: Analyzing and effecting students’ performance. Educational Studies in Mathematics, 16(4), 389–409. doi:10.1007/BF00417194
  • Brown, M., Küchemann, D., & Hodgen, J. (2010). The struggle to achieve multiplicative reasoning 11–14. Proceedings of the Seventh British Congress of Mathematics Education (Vol. 30, pp. 49–56). Manchester, UK: British Society for Research into Learning Mathematics.
  • Broza, O., & Kolikant, Y. B.-D. (2015). Contingent teaching to low-achieving students in mathematics: Challenges and potential for scaffolding meaningful learning. ZDM: The International Journal on Mathematics Education, 47(7), 1093–1105. doi:10.1007/s11858-015-0724-1
  • Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in Grades 1–5. Journal for Research in Mathematics Education, 27(1), 41–51. doi:10.2307/749196
  • Department for Education. (2014). National curriculum in England: Mathematics programmes of study. Retrieved June 3, 2015, from https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press.
  • Elia, I., Gagatsis, A., & van den Heuvel-Panhuizen, M. (2014). The role of gestures in making connections between space and shape aspects and their verbal representations in the early years: Findings from a case study. Mathematics Education Research Journal, 26(4), 735–761. doi:10.1007/s13394-013-0104-5
  • Finesilver, C. (2009). Drawing, modelling and gesture in students’ solutions to a Cartesian product problem. Educate, 9(3), 21–36.
  • Finesilver, C. (2014). Drawing division: Emerging and developing multiplicative structure in low-attaining students’ representational strategies ( PhD thesis). Institute of Education, London, UK. Retrieved from http://eprints.ioe.ac.uk/20816/
  • Fletcher, K. L., Huffman, L. F., Bray, N. W., & Grupe, L. A. (1998). The use of the microgenetic method with children with disabilities: Discovering competence. Early Education & Development, 9(4), 357. doi:10.1207/s15566935eed0904_3
  • Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54(3), 372–391. doi:10.1016/0022-0965(92)90026-3
  • Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A ‘Proceptual’ view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140. doi:10.2307/749505
  • Harries, T., & Barmby, P. (2007). Representing and understanding multiplication. Research in Mathematics Education, 9(1), 33–45. doi:10.1080/14794800008520169
  • Izsák, A. (2005). ‘You have to count the squares’: Applying knowledge in pieces to learning rectangular area. The Journal of the Learning Sciences, 14(3), 361–403. doi:10.1207/s15327809jls1403_2
  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  • Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15–28. doi:10.1177/0022219407311003
  • Mulligan, J. (2011). Towards understanding the origins of children’s difficulties in mathematics learning. Australian Journal of Learning Difficulties, 16(1), 19–39. doi:10.1080/19404158.2011.563476
  • Ostad, S. A. (1997). Developmental differences in addition strategies: A comparison of mathematically disabled and mathematically normal children. British Journal of Educational Psychology, 67(3), 345–357. doi:10.1111/bjep.1997.67.issue-3
  • Outhred, L. N., & Mitchelmore, M. (2004). Students’ structuring of rectangular arrays. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 465–472). Bergen, Norway: Bergen University College.
  • Outhred, L. N., & Mitchelmore, M. C. (2000). Young children’s intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31(2), 144–167. doi:10.2307/749749
  • Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15(1), 1–12. doi:10.1159/000271225
  • Pitta-Pantazi, D., & Christou, C. (2010). Spatial versus object visualisation: The case of mathematical understanding in three-dimensional arrays of cubes and nets. International Journal of Educational Research, 49(2–3), 102–114. doi:10.1016/j.ijer.2010.10.001
  • Robinson, K. M., & Dubé, A. K. (2008). A microgenetic study of simple division. Canadian Journal of Experimental Psychology, 62(3), 156–162. doi:10.1037/1196-1961.62.3.156
  • Robinson, K. M., & Dubé, A. K. (2009). A microgenetic study of the multiplication and division inversion concept. Canadian Journal of Experimental Psychology, 63(3), 193–200. doi:10.1037/a0013908
  • Schoenfeld, A. H., Smith, J. P., & Arcavi, A. (1993). Learning: The microgenetic analysis of one student’s evolving understanding of a complex subject matter domain. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 4, pp. 55–175). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Sherin, B., & Fuson, K. (2005). Multiplication strategies and the appropriation of computational resources. Journal for Research in Mathematics Education, 36(4), 347–395.
  • Siegler, R. S. (1988). Individual differences in strategy choices: Good students, not-so-good students, and perfectionists. Child Development, 59(4), 833–851. doi:10.2307/1130252
  • Siegler, R. S. (2000). The rebirth of children’s learning. Child Development, 71(1), 26–35. doi:10.1111/cdev.2000.71.issue-1
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46(6), 606–620. doi:10.1037/0003-066X.46.6.606
  • Voutsina, C. (2012). A micro-developmental approach to studying young children’s problem solving behavior in addition. The Journal of Mathematical Behavior, 31(3), 366–381. doi:10.1016/j.jmathb.2012.03.002
  • Watson, A. (2006). Raising achievement in secondary mathematics. Maidenhead, UK: Open UP.
  • Yeo, D. (2003). Dyslexia, dyspraxia and mathematics. London, UK: Whurr.
  • Zhang, D., Xin, Y. P., Harris, K., & Ding, Y. (2014). Improving multiplication strategic development in children with math difficulties. Learning Disability Quarterly, 37(1), 15–30. doi:10.1177/0731948713500146
  • Zhang, D., Xin, Y. P., & Si, L. (2013). Transition from intuitive to advanced strategies in multiplicative reasoning for students with math difficulties. The Journal of Special Education, 47(1), 50–64. doi:10.1177/0022466911399098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.