1,712
Views
6
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Effect of 4-hydroxybenzoic acid on grape (Vitis vinifera L.) soil microbial community structure and functional diversity

, , , , , , & show all
Pages 637-645 | Received 02 Dec 2014, Accepted 31 Mar 2015, Published online: 30 Apr 2015

References

  • Qu XH, Wang JG. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol. 2008;39(2):172–179.
  • Sampietro DA, Sgariglia MA, Soberón JR, Quiroga EN, Vattuone MA. Role of sugarcane straw allelochemicals in the growth suppression of arrowleaf sida. Environ Exp Bot. 2007;60(3):495–503.
  • Zhao X, Zhen W, Qi Y, Liu X, Yin B. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry. Front Agric China. 2009;3(1):34–39.
  • Singh HP, Batish RD, Kohli RK. Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci. 1999;18(6):757–772.
  • Teasdale JR, Rice CP, Cai G, Mangum RW. Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecol. 2012;213(12):1893–1905.
  • Inderjit RK, Kaur R, Kaur S, Callaway RM. Impact of (±)-catechin on soil microbial communities. Commun Intgr Biol. 2009;2(2):127–129.
  • Cantor A, Hale A, Aaron J, Traw MB, Kalisz S. Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination. Biol Invasions. 2011;13(12):3015–3025.
  • Zhou X, Wu F. Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.). Can J Soil Sci. 2013;93(1):13–21.
  • Zou L, Yuan XY, Li L, Wang XY. Effects continuous cropping on soil microbes on soybean roots. J Microbiol. 2005;2:27–30.
  • Qi J, Yao H, Ma X, Zhou L, Li X. Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Commun Soil Sci Plant Anal. 2009;40(9–10):1462–1482.
  • Wu F, Wang X, Xue C. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur J Soil Biol. 2009;45(4):356–362.
  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol. 2013;39(2):232–242.
  • Deal DR, Mail WF, Boothyord CW. A survey of biotic relationships in grape replant situations. Phytopathology. 1972;62:503–507.
  • Traquair JA. Etiology and control of orchard replant problems: a review. Can J Plant Pathol. 1984;6(1):54–62.
  • Waschkies C, Schropp A, Marschner H. Relations between replant disease, growth parameters and mineral nutrition status of grapevines(Vitis sp.). Vitis. 1993;32(2):67–76.
  • Schneider SM, Ajwa H, Trout TJ. Chemical alternatives to methyl bromide for nematode control under vineyard replant conditions. Am J Enol Vitic. 2006;57(2):183–193.
  • Cabrera JA, Wang D, Schneider SM, Hanson BD. Subsurface drip application of alternative fumigants to methyl bromide for controlling nematodes in replanted grapevines. Pest Manag Sci. 2012;68(5):773–780.
  • Westphal A, Browne GT, Schneider S. Evidence for biological nature of the grape replant problem in California. Plant Soil. 2002;242(2):197–203.
  • Brinker A, Creasy L. Inhibitors as a possible basis for grape replant problem. J Am Soc Hortic Sci. 1988;113(3):304–309.
  • Guo XW, Li K, Sun YN, Zhang LH, Hu XX, Xie HG. Allelopathic effects and identification of allelochemicals in grape root exudates. Acta Hortic Sinica. 2010;37(6):861–868.
  • Li K, Han, X, Guo XW, Wang B, Jin GH. Dynamic changes of exogenous ρ-hydroxybenzoic acid in grape soil. J Shenyang Agric Univ. 2013;44(4):413–417.
  • Nazih, N, Finlay-Moore O, Hartel, PG, Fuhrmann JJ. Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biol Biochem. 2001;33(4): 693–696.
  • Williamson GB, Richardson D. Bioassays for allelopathy: measuring treatment responses with independent controls. J Chem Ecol. 1988;14(1):181–187.
  • Heuer H, Krsek M, Baker P, Smalla K, Wellington E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microb. 1997;63(8):3233–3241.
  • White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols. New York, Taylor & Francis; 1990. p. 229–232.
  • Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113–118.
  • Shannon CE, Weaver W. The mathematical theory of communication. Urbana: Taylor & Francis; 1949.
  • Garland JL, Mills, AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb. 1991;57:2351–2359.
  • Insam H. A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A, editors. Functional versus structural approaches. Microbial Communities. Berlin: Taylor & Francis; 1997. p. 259–260.
  • Kennedy AC, Gewin VL. Soil microbial diversity: present and future considerations. Soil Sci. 1997;162(9):607–617.
  • Kennedy A, Smith K. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil. 1995;170(1):75–86.
  • Smalla K, Wachtendorf U, Heuer H, Liu WT, Forney L. Analysis of Biolog GN substrate utilization patterns by microbial communities. Appl Environ Microb. 1998;64(4)1220–1225.
  • Li Y, Hu C, Ding W, Liu M. Effects of autotoxins stress on root exudates of Panax Ginseng. World Sci Technol Mod Tradit Chin Med. 2013;15(7):1499–1504.
  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microb. 2008;74(3):738–744.
  • Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol. 2004;42:243–270.
  • Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci. 2013;9(2):164–173.
  • Ling N, Zhang WW, Wang DS, Mao JG, Huang QW, Guo SW. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporumf.sp. niveum. PLoS One. 2013;8(5). doi:10.1371/journal.pone.0063383.g001.
  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem. 2013;288(7):4502–4512.
  • Neumann G, Bott S, Ohler M, Mock HP, Lippmann R, Grosch R, Smalla K. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front in Microb. 2014;5:2. doi:10.3389/fmicb.2014.00002. eCollection
  • Kowalchuk GA, De Souza FA, Van Veen JA. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol. 2002;11(3):571–581.