3,319
Views
21
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Thermotolerant yeasts capable of producing bioethanol: isolation from natural fermented sources, identification and characterization

, , &
Pages 1106-1114 | Received 04 Dec 2015, Accepted 22 Aug 2016, Published online: 03 Oct 2016

References

  • Alfenore S , Molina-Jouve C , Guillouet SE , et al. Improving ethanol production and viability of Saccharomyces cerevisiae vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol. 2002;60:67–72.
  • Roehr M . The biotechnology of ethanol. Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA; 2001.
  • Murata M , Rodrussamec N , Suprayogi NY , et al. High-temperature ethanol fermentation with thermotolerant microbes. Proceedings of the 5th Bangladesh-Japan Joint International Conference; 2010 Dec 26–28; Dhaka, Bangladesh . p. 199–205.
  • Talukder AA , Sujon SI , Hossain MM , et al. Production of bioethanol at high temperature from Tari. Adv Microbiol. 2015;5:325–335.
  • Kurtzman CP , Fell JW . The yeasts, a taxonomic study. 4th ed. Amsterdam: Elsevier Publication; 1998.
  • Sree NK , Sridhar M , Rao LV , et al. Ethanol production in solid substrate fermentation using thermotolerant yeast. Process Biochem. 1999;34:115–119.
  • Talukder AA , Hiraga S , Ishihama A . Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells. 2000;5:613–626.
  • Caputi A Jr , Ueda M , Brown T . Spectrophotometric determination of ethanol in wine. Am J Enol Viticult. 1968;19:160–165.
  • O'Donnell K. Fusarium and it's near relatives. In: Reynolds DR , Taylor JW , editors. The fungal Holomarph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford : CAB International; 1993. p. 225–233.
  • Murata M , Nitiyon S , Lertwattanasakul N , et al. High-temperature fermentation technology for low-cost bioethanol. J Japan Inst Energy. 2015;94:1154–1162.
  • Matsushita K , Azuma Y , Kosaka T , et al. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci Biotech Biochem. 2016;80:655–658.
  • Rodrussamec N , Lertwattanesakul N , Hirata K , et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus . Appl Microbiol Biotechnol. 2011;90:1573–1586.
  • Yuangsaard N , Yongmanitchai W , Yamada M , et al. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie Van Leeuwenhoek. 2013;103:577–588.
  • Laluce C , Bertolini MC , Hernandes J , et al. Screening survey for yeasts that ferment sucrose at relatively high temperature. Ann Microbiol. 1987;37:151–159.
  • Anderson PJ , McNeil K , Watson K . High-efficiency carbohydrate fermentation to ethanol at the temperature above 40 °C by Kluyveromyces ma rxianus var. Marxianus isolated from sugar mills. Appl Environ Microbiol. 1986;51:1314–1320.
  • Hacking AJ , Taylor IWF , Hanas CM . Selection of yeast able to produce ethanol from glucose at 40 ˚C. Appl Microbiol Biotechnol. 1984;19:361–363.
  • Abdel-Banat BM , Hoshida H , Ano A . et al. High-temperature fermentation: how can process for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol. 2010;85:861–867.
  • Li H , Wu M , Xu L , et al. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microbiol Biotechnol. 2015;8:266–274.
  • Jeffries TW . Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis . Biotechnol Lett. 1981;3:213–218.
  • Picataggio S , Rohrer T , Deanda K , et al. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology. 1992;10:894–898.
  • Benjamin S , Pandey A . Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast. 1998;14:1069–1087.
  • Leathers TD , Dien BS . Xylitol production from corn fibre hydrolysates by a two-stage fermentation process. Process Biochem. 2000;35:765–776.
  • San Milian RM , Wu LC , Salkin IF , et al. Clinical isolates of Candida guilliermondii include Candida fermentati . Int J Syst Bacteriol. 1997;47:385–393.
  • Zou YZ , Qi K , Chen X , et al. Favorable effect of very low initial K(L)a value on xylitol production from xylose by a self-isolated strain of Pichia guilliermondii . J Biosci Bioeng. 2010;109:149–152.
  • Meroth CB , Hammes WP , Hertel C . Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2003;69:7453–7461.
  • Chan GF , Gan HM , Ling HL , et al. Genome sequence of Pichia Kudriavzevii M12, a potential producer of bioethanol and phytase. Eukarot Cell. 2012;11:1300–1301.