354
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flaxseed protein isolate-alginate microbeads as encapsulating agents for enhanced survival of Enterococcus faecalis HZNU S1 during storage and in vitro gastrointestinal conditions

ORCID Icon, , , , , , , & show all
Article: 2262625 | Received 28 Jun 2023, Accepted 20 Sep 2023, Published online: 02 Oct 2023

References

  • Dong QY, Chen MY, Xin Y, et al. Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Technol. 2013;48(7):1–10. doi: 10.1111/ijfs.12078.
  • FAO. /WHO. Probiotics in food health and nutritional properties and guidelines for evaluation: report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bateria. 2006.
  • Zhang Y, Zheng W, Gu JF, et al. Soy protein isolate-alginate microspheres for encapsulation of Enterococcus faecalis HZNU P2. Braz. arch. biol. technol. 2015;58(5):805–811. doi: 10.1590/S1516-89132015050260.
  • Afzaal M, Khan AU, Saeed F, et al. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr. 2019;7(12):3931–3940. doi: 10.1002/fsn3.1254.
  • Frakolaki G, Giannou V, Kekos D, et al. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr. 2021;61(9):1515–1536. doi: 10.1080/10408398.2020.1761773.
  • Ta LP, Bujna E, Antal O, et al. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int J Biol Macromol. 2021;183:1136–1144. doi: 10.1016/j.ijbiomac.2021.04.170.
  • Vaziri AS, Alemzadeh I, Vossoughi M, et al. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr Polym. 2018;199:266–275. doi: 10.1016/j.carbpol.2018.07.002.
  • Braber NV, Vergara LD, Rossi Y, et al. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT Food Sci Technol. 2020;118:108844. doi: 10.1016/j.lwt.2019.108844.
  • Nualkaekul S, Lenton D, Cook MT, et al. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr Polym. 2012;90(3):1281–1287. doi: 10.1016/j.carbpol.2012.06.073.
  • Reque PM, Brandelli A. Encapsulation of probiotics and nutraceuticals: applications in functional food industry. Trends Food Sci Tech. 2021;114:1–10. doi: 10.1016/j.tifs.2021.05.022.
  • Tolve R, Cela N, Condelli N, et al. Microencapsulation as a tool for the formulation of functional foods: the phytosterols’ case study. Foods. 2020;9(4):470. doi: 10.3390/foods9040470.
  • Adilah RN, Chiu ST, Hu SY, et al. Improvement in the probiotic efficacy of Bacillus subtilis E20-stimulates growth and health status of white shrimp, Litopenaeus vannamei via encapsulation in alginate and coated with chitosan. Fish Shellfish Immunol. 2022;125:74–83. doi: 10.1016/j.fsi.2022.05.002.
  • Peng M, Tabashsum Z, Anderson M, et al. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr Rev Food Sci Food Saf. 2020;19(4):1908–1933. doi: 10.1111/1541-4337.12565.
  • Pourjafar H, Noori N, Gandomi H, et al. Viability of microencapsulated and nonmicroencapsulated lactobacilli in a commercial beverage. Biotechnol Rep (Amst). 2020;25:e00432. doi: 10.1016/j.btre.2020.e00432.
  • Afzaal M, Khan AU, Saeed F, et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci Nutr. 2020;8(3):1649–1656. doi: 10.1002/fsn3.1451.
  • Martin MJ, Lara-Villoslada F, Ruiz MA, et al. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg. 2015;27:15–25. doi: 10.1016/j.ifset.2014.09.010.
  • Nesterenko A, Alric I, Silvestre F, et al. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crop Prod. 2013;42:469–479. doi: 10.1016/j.indcrop.2012.06.035.
  • Saeed F, Afzaal M, Ahmad A, et al. Enhanced viability of microencapsulated lyophilized probiotics under in vitro simulated gastrointestinal conditions. J Food Process Pres. 2022;46:e16543.
  • Chen MY, Zheng W, Dong QY, et al. Activity of encapsulated Lactobacillus bulgaricus in alginate-whey protein microspheres. Braz. arch. biol. technol. 2014;57(5):736–741. doi: 10.1590/S1516-8913201402377.
  • Pan LX, Fang XJ, Yu Z, et al. Encapsulation in alginate-skim milk microspheres improves viability of Lactobacillus bulgaricus in gastrointestinal conditions. Int J Food Sci Nutr. 2013;64(3):380–384. doi: 10.3109/09637486.2012.749841.
  • Silva KS, Mauro MA, Goncalves MP, et al. Synergistic interactions of locust bean gum with whey proteins: effect on physicochemical and microstructural properties of whey protein-based films. Food Hydrocolloid. 2016;54:179–188. doi: 10.1016/j.foodhyd.2015.09.028.
  • Klemmer KJ, Korber DR, Low NH, et al. Pea protein-based capsules for probiotic and prebiotic delivery. Int J Food Sci Tech. 2011;46(11):2248–2256. doi: 10.1111/j.1365-2621.2011.02743.x.
  • Etchepare MA, Nunes GL, Nicoloso BR, et al. Improvement of the viability of encapsulated probiotics using whey proteins. LWT Food Sci Technol. 2020;117:108601. doi: 10.1016/j.lwt.2019.108601.
  • Ahmadova A, Todorov SD, Choiset Y, et al. Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from azerbaijani motal cheese. Food Control. 2013;30(2):631–641. doi: 10.1016/j.foodcont.2012.08.009.
  • Daba GM, El-Dien AN, Saleh SAA, et al. Evaluation of enterococcus strains newly isolated from egyptian sources for bacteriocin production and probiotic potential. Biocatal Agr Biotech. 2021;35:102058. doi: 10.1016/j.bcab.2021.102058.
  • El-Ghaish S, Khalifa M, Elmahdy A. Antimicrobial impact for lactococcus lactis subsp. Lactis A15 and Enterococcus faecium A15 isolated from some traditional egyptian dairy products on some pathogenic bacteria. J Food Biochem. 2017;41(1):e12279. doi: 10.1111/jfbc.12279.
  • Roselino MN, Sakamoto IK, Adorno MAT, et al. Effect of fermented sausages with probiotic Enterococcus faecium CRL 183 on gut microbiota using dynamic colonic model. LWT Food Sci Technol. 2020;132:109876. doi: 10.1016/j.lwt.2020.109876.
  • Gaglio R, Couto N, Marques C, et al. Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. Int J Food Microbiol. 2016;236:107–114. doi: 10.1016/j.ijfoodmicro.2016.07.020.
  • Rehaiem A, Martinez B, Manai M, et al. Production of enterocin a by Enterococcus faecium MMRA isolated from Rayeb, a traditional Tunisian dairy beverage. J Appl Microbiol. 2010;108(5):1685–1693. doi: 10.1111/j.1365-2672.2009.04565.x.
  • Mishra AK, Ghosh AR. Probiotic Enterococcus faecalis AG5 mitigated high fat diet induced obesity and produced propionic acid stimulated apoptosis in 3T3-L1 pre-adipocyte. Life Sci. 2020;261:118292. doi: 10.1016/j.lfs.2020.118292.
  • Zheng W, Zhang Y, Lu H, et al. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces. BMC Biotechnol. 2015;15(1):30. doi: 10.1186/s12896-015-0151-y.
  • Iqbal R, Liaqat A, Yasmin I, et al. Double layered encapsulation to immobilize Bifidobacterium bifidum ATCC 35914 in polysaccharide-protein matrices and their viability in set type yoghurt. J Food Process Pres. 2022;46:e16748.
  • González-Ferrero C, Irache JM, González-Navarro CJ. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chem. 2018;239:879–888. doi: 10.1016/j.foodchem.2017.07.022.
  • Praepanitchai O-A, Noomhorm A, Anal AK. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. Biomed Res Int. 2019;2019:9768152–9768158. doi: 10.1155/2019/9768152.
  • Shi L-E, Li Z-H, Li D-T, et al. Encapsulation of probiotics Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of survival in simulated gastrointestinal conditions. J Food Eng. 2013;117(1):99–104. doi: 10.1016/j.jfoodeng.2013.02.012.
  • Shi L-E, Li Z-H, Zhang Z-L, et al. Encapsulation of Lactobacillus bulgaricus in carragenan-locust bean gum coated milk microspheres with double layer structure. LWT Food Sci Technol. 2013;54(1):147–151. doi: 10.1016/j.lwt.2013.05.027.
  • Ying D, Stephanie S, Rangika W, et al. Microencapsulated lactobaciilus rhamnosus GG in whey protein and resistant starch matrices: probiotic survival in fruit juice. J Funct Foods. 2013;5(1):98–105. doi: 10.1016/j.jff.2012.08.009.
  • Ye X, Xu M, Tang Z, et al. Flaxseed protein: extraction, functionalities and applications. Food Sci Tech. 2022;42:e22021.
  • Azizi S, Rezazadeh-Bari M, Almasi H, et al. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: effect of encapsulation method and transglutaminase. Food Biosci. 2021;41:101012. doi: 10.1016/j.fbio.2021.101012.
  • Moayyedi M, Eskandari MH, Rad AHE, et al. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. J Funct Foods. 2018;40:391–399. doi: 10.1016/j.jff.2017.11.016.
  • Yasmin I, Saeed M, Pasha I, et al. Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics Antimicrob Proteins. 2019;11(2):413–426. doi: 10.1007/s12602-018-9407-x.
  • Sathyabama S, Ranjith Kumar M, Bruntha Devi P, et al. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT Food Sci Technol. 2014;57(1):419–425. doi: 10.1016/j.lwt.2013.12.024.
  • Haghshenas B, Abdullah N, Nami Y, et al. Microencapsulation of probiotic bacteria Lactobacillus plantarum 15HN using alginate-psyllium-fenugreek polymeric blends. J Appl Microbiol. 2015;118(4):1048–1057. doi: 10.1111/jam.12762.
  • Dimitrellou D, Kandylis P, Levic S, et al. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT Food Sci Technol. 2019;116:108501. doi: 10.1016/j.lwt.2019.108501.
  • Trindade CSF, Grosso CRF. The effect of the immobilization of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft Milk Sci Int. 2000;55:496–499.
  • Shi LE, Zheng W, Zhang Y, et al. Soy milk-based microspheres as potential carriers for the protection of Enterococcus faecalis HZNU P2. J Funct Foods. 2015;18:487–491. doi: 10.1016/j.jff.2015.08.007.
  • Nami Y, Haghshenas B, Khosroushahi AY. Effect of psyllium and gum arabic biopolymers on the survival rate and storage stability in yogurt of Enterococcus durans IW3 encapsulated in alginate. Food Sci Nutr. 2017;5(3):554–563. doi: 10.1002/fsn3.430.
  • Wang L, Yu X, Xu H, et al. Effect of skim milk coated inulin-alginate encapsulation beads on viability and gene expression of Lactobacillus plantarum during freeze-drying. LWT Food Sci Technol. 2016;68:8–13. doi: 10.1016/j.lwt.2015.12.001.
  • Apiwattanasiri P, Charoen R, Rittisak S, et al. Co-encapsulation efficiency of silk sericin-alginate-prebiotics and the effectiveness of silk sericin coating layer on the survival of probiotic Lactobacillus casei. Food Biosci. 2022;46:101576. doi: 10.1016/j.fbio.2022.101576.
  • Dimitrellou D, Kandylis P, Petrović T, et al. Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT Food Sci Technol. 2016;71:169–174. doi: 10.1016/j.lwt.2016.03.007.
  • Silva HL, Balthazar CF, Silva R, et al. Sodium reduction and flavor enhancer addition in probiotic prato cheese: contributions of quantitative descriptive analysis and temporal dominance of sensations for sensory profiling. J Dairy Sci. 2018;101(10):8837–8846. doi: 10.3168/jds.2018-14819.
  • Moumita S, Das B, Hasan U, et al. Effect of long-term storage on viability and acceptability of lyophilized and spray-dried synbiotic microcapsules in dry functional food fomulations. LWT Food Sci Technol. 2018;96:127–132. doi: 10.1016/j.lwt.2018.05.030.