113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Authentication of the Apis cerana honey with the proofreading enzyme-mediated probe cleavage combined with ladder-shape melting temperature isothermal amplification (Proofman-LMTIA) method

, , , , , , , , & show all
Article: 2357204 | Received 18 Dec 2023, Accepted 15 May 2024, Published online: 24 May 2024

References

  • Zhang YZ, Wang S, Chen YF, et al. Authentication of Apis cerana honey and Apis mellifera honey based on major royal jelly protein 2 gene. Molecules. 2019;24(2):1. doi: 10.3390/molecules24020289.
  • Soares S, Grazina L, Mafra I, et al. Novel diagnostic tools for asian (Apis cerana) and european (Apis mellifera) honey authentication. Food Res Int. 2018;105:686–9. doi: 10.1016/j.foodres.2017.11.081.
  • He X, Wang W, Qin Q, et al. Assessment of flight activity and homing ability in asian and european honey bee species, Apis cerana and Apis mellifera, measured with radio frequency tags. Apidologie. 2013;44(1):38–51. doi: 10.1007/s13592-012-0156-7.
  • Chen CT, Chen BY, Nai YS, et al. Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content. J Food Drug Anal. 2019;27(1):175–183. doi: 10.1016/j.jfda.2018.08.004.
  • Karabagias IK. Seeking of reliable markers related to greek nectar honey geographical and botanical origin identification based on sugar profile by HPLC-RI and electro-chemical parameters using multivariate statistics. Eur Food Res Technol. 2019;245(4):805–816. doi: 10.1007/s00217-018-3216-z.
  • Soares S, Amaral JS, Oliveira MBPP, et al. A comprehensive review on the main honey authentication issues: production and origin. Compr Rev Food Sci Food Saf. 2017;16(5):1072–1100. doi: 10.1111/1541-4337.12278.
  • Naila A, Flint SH, Sulaiman AZ, et al. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control. 2018;90:152–165. doi: 10.1016/j.foodcont.2018.02.027.
  • Prosser SWJ, Hebert PDN. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 2017;214:183–191. doi: 10.1016/j.foodchem.2016.07.077.
  • Kek SP, Chin NL, Tan SW, et al. Molecular identification of honey entomological origin based on bee mitochondrial 16S rRNA and COI gene sequences. Food Control. 2017;78:150–159. doi: 10.1016/j.foodcont.2017.02.025.
  • Kek SP, Chin NL, Tan SW, et al. Comparison of DNA extraction methods for entomological origin identification of honey using simple additive weighting method. Int J Food Sci Tech. 2018;53(11):2490–2499. doi: 10.1111/ijfs.13840.
  • Mohamadzade Namin S, Ghosh S, Jung C. Honey quality control: review of methodologies for determining entomological origin. Molecules. 2023;28(10):4232. doi: 10.3390/molecules28104232.
  • Wang Z, Yu W, Xie R, et al. A strip of lateral flow gene assay using gold nanoparticles for point-of-care diagnosis of African swine fever virus in limited environment. Anal Bioanal Chem. 2021;413(18):4665–4672. doi: 10.1007/s00216-021-03408-2.
  • Wang D, Wang Y, Zhang M, et al. Ladder-shape melting temperature isothermal amplification of nucleic acids. Biotechniques. 2021;71(1):358–369. doi: 10.2144/btn-2020-0173.
  • Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of Beta-Globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–1354. doi: 10.1126/science.2999980.
  • Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–491. doi: 10.1126/science.239.4839.487.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63-e63–63. doi: 10.1093/nar/28.12.e63.
  • Wang Y, Wang B, Xu D, et al. Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for detection of african swine fever virus (ASFV). J Vet Sci. 2022;23(4):e51. doi: 10.4142/jvs.22001.
  • Wang Y, Wang B, Wang D. Detection of chicken adulteration in beef via ladder-shape melting temperature isothermal amplification (LMTIA) assay. Biotechnol Biotechnolo Equip. 2022;36(1):339–345. doi: 10.1080/13102818.2022.2081514.
  • Zhang Y, Wang Y, Ouyang X, et al. Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for the identification of cassava component in sweet potato starch noodles. Molecules. 2022;27(11):3414. doi: 10.3390/molecules27113414.
  • Zhang X, Li Z, Zhang Y, et al. Rapid discrimination of Panax quinquefolium and Panax ginseng using the Proofman-Duplex-LMTIA technique. Molecules. 2023;28(19):6872. doi: 10.3390/molecules28196872.
  • Xiao F, Gu M, Zhang Y, et al. Detection of soybean-derived components in dairy products using proofreading enzyme-mediated probe cleavage coupled with ladder-shape melting temperature isothermal amplification (Proofman-LMTIA). Molecules. 2023;28(4):1685. doi: 10.3390/molecules28041685.
  • Gu M, Xiao F, Wang B, et al. Study on detection of soybean components in edible oil with ladder-shape melting temperature isothermal amplification (LMTIA) assay. Anal Methods. 2023;15(5):581–586. doi: 10.1039/d2ay01719a.
  • Glökler J, Lim TS, Ida J, et al. Isothermal amplifications—A comprehensive review on current methods. Crit Rev Biochem Mol Biol. 2021;56(6):543–586. doi: 10.1080/10409238.2021.1937927.
  • Wang Y, Wang B, Wang D. Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for detection of duck adulteration in beef. J Food Prot. 2022;85(8):1203–1209. doi: 10.4315/JFP-22-015.
  • Wang Y, Wang B, Wang D. Detection of pork adulteration in beef with ladder-shape melting temperature isothermal amplification (LMTIA) assay. CyTA J Food. 2022;20(1):244–250.
  • Song C, Wang B, Wang Y, et al. Detection of Listeria monocytogenes in food using the Proofman-LMTIA assay. Molecules. 2023;28(14):5457. doi: 10.3390/molecules28145457.