Publication Cover
Redox Report
Communications in Free Radical Research
Volume 25, 2020 - Issue 1
2,328
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant potential of biflavonoid attenuates hyperglycemia by modulating the carbohydrate metabolic enzymes in high fat diet/streptozotocin induced diabetic rats

ORCID Icon, , , &

References

  • Mrudula T, Suryanarayana P, Srinivas PN, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 2007;361:528–532. doi: 10.1016/j.bbrc.2007.07.059
  • Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12:130–147.
  • Sharma AK, Bharti S, Goyal S, et al. Upregulation of PPARγ by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytother Res. 2011;25:1457–1465. doi: 10.1002/ptr.3442
  • Weir GC, Bonner Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53:S16–S21. doi: 10.2337/diabetes.53.suppl_3.S16
  • International Diabetes Federation (IDF). IDF diabetes atlas. 7th ed. Brussels: International Diabetes Federation; 2015.
  • Suman BS, Afreena N, Krishna MP, et al. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol. 2006;104:367–373. doi: 10.1016/j.jep.2005.10.033
  • Chopra RN, Chopra IC, Handa KL, et al. Indigenous drugs of India. 2nd ed. Calcutta: U.N. Dhur and Sons; 1958. p. 408.
  • Ishatulla K, Ansari WH, Rahman W, et al. Bioflavanoids from Semecarpus anacardium linn. Indian J Chem. 1977;15:617–622.
  • Mathur HN, Agarwal JS. Phenolic modified resin of oil varnishes. J Sci Indian Res. 1953;12:411.
  • Rao NS, Row LR, Brown RT. Phenolic constituents of Semecarpus anacardium. Phytochemistry. 1973;12:671–681. doi: 10.1016/S0031-9422(00)84463-5
  • Carpenter RC, Sotheeswaran S, Uvais M, et al. (-)-5-Methylmellein and catechol derivatives from four Semecarpus species. Phytochem. 1980;19:445–447. doi: 10.1016/0031-9422(80)83198-0
  • Selvam B, Jachak SM. A cyclooxygenase (COX) inhibitory biflavonoid from the seeds of Semecarpus anacardium. J Ethnopharmacol. 2004;95:209–212. doi: 10.1016/j.jep.2004.07.026
  • Murthy SSN. Confirmation of the structure of Jeediflavonone: a biflavonane from Semecarpus anacardium. Phytochem. 1984;23:925–927. doi: 10.1016/S0031-9422(00)85069-4
  • Murthy SSN. Naturally occurring biflavonoid derivatives: galluflavanone, a new biflavonoid from Semecarpus anacardium. Indian J Chem. 1985;24b:398–402.
  • Murthy SSN. Semicarpetin: a biflavonoid from Semecarpus anacardium. Phytochem. 1988;27:3020–3022. doi: 10.1016/0031-9422(88)80721-0
  • Murthy SSN. New biflavonoid from Semecarpus anacardium linn. Clin Acta Turcica. 1992;20:33–37.
  • Bhitre MJ, Patil S, Kataria M, et al. Anti-inflammatory activity of the fruits of Semecarpus anacardium Linn. Asian J Chem. 2008;20:2047–2050.
  • Nair A, Bhide SV. Antimicrobial properties of different parts of Semecarpus anacardium. Indian Drugs. 1996;33:323–328.
  • Sundarama R, Muthu K, Nagaraj S, et al. Isolation and characterization of catechol derivatives from Semecarpus anacardium seeds and their antibacterial potential in in vitro. Biomed Prev Nutr. 2014;4:177–180. doi: 10.1016/j.bionut.2013.12.001
  • Purusothaman A, Meenatchi P, Saravanan N, et al. Isolation and characterization of an acyclic isoprenoid from Semecarpus anacardium Linn. and its antibacterial potential in vitro. J Pharmacopuncture. 2017;20:119–126.
  • Dai J, Russell RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Mol. 2010;15:7313–7352. doi: 10.3390/molecules15107313
  • Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915
  • Xie W, Xing D, Sun H, et al. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am J Chin Med. 2005;33:95–105. doi: 10.1142/S0192415X05002692
  • Wu D, Wen W, Li C, et al. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine. 2012;19:712–718. doi: 10.1016/j.phymed.2012.03.003
  • Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen Acceptor. Ann Clin Biochem. 1969;6:24–27. doi: 10.1177/000456326900600108
  • Drabkin DL, Austin JM. Spectrophotometric studies, spectrophotometric constants for common haemoglobin derivatives in human, dog and rabbit blood. J Biol Chem. 1932;98:719–733.
  • Sudhakar NS, Pattabiraman TN. A new colorimetric method for the estimation of glycosylated hemoglobin. Clin Chim Acta. 1981;109:267–274. doi: 10.1016/0009-8981(81)90312-0
  • Bannon P. Effect of pH on the elimination of the labile fraction of glycosylated hemoglobin. Clin Chem. 1982;28(10):2183–2183. doi: 10.1093/clinchem/28.10.2183a
  • Burgi W, Briner M, Franken N, et al. One-step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clin Biochem. 1988;21:311–314. doi: 10.1016/S0009-9120(88)80087-0
  • Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12:166–171. doi: 10.1093/geronj/12.2.166
  • Koide H, Oda T. Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta. 1959;4:554–561. doi: 10.1016/0009-8981(59)90165-2
  • Fiske CH, Subbarow J. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.
  • Gancedo JM, Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol. 1971;76:132–138.
  • Ells HA, Kirkman HN. A colorimetric method for assay of erythrocytic glucose-6- phosphate dehydrogenase. Proc Soc Exp Biol Med. 1961;106:607–609. doi: 10.3181/00379727-106-26418
  • Leloir LF, Goldemberg SH. Glycogen synthetase from rat liver: (Glucose)n+(UDPG) →(Glucose)n+1+UDP. Meth Enzymol. 1962;5:145–147. doi: 10.1016/S0076-6879(62)05196-4
  • Cornblath M, Randle PJ, Parmeggiani A, et al. Regulation of glycogenolysis in muscle: effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart. J Biol Chem. 1963;238:1592–1597.
  • Morales MA, Jabbagy AJ, Terenizi HR. Mutations affecting accumulation of glycogen. Fungal Genet Rep. 1973;20:24–25.
  • Fraga CG, Leibouitz BE, Toppel AL. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. J Free Rad Biol Med. 1988;4:155–161. doi: 10.1016/0891-5849(88)90023-8
  • Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992;202:384–389. doi: 10.1016/0003-2697(92)90122-N
  • Sinha KA. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7
  • Kakkar R, Mantha SV, Radhi J, et al. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin induced diabetes. Clin Sci. 1998;94:623–632. doi: 10.1042/cs0940623
  • Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Sci. 1973;179:588–590. doi: 10.1126/science.179.4073.588
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferase: the first step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.
  • Omaye ST, Turnbull TD, Sauberlich HE. Selected method for the determination of ascorbic acid in animal cells, tissues and fluid. In: DB McCormic, DL Wright, editor. Methods Enzymol. Vol 62. New York: Academic Press; 1979. p. 3–11.
  • Baker H, Frank O, Angelis B. Feingold SPlasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int. 1980;21:531–536.
  • Beutler E, Kelly BM. The effect of sodium nitrite on red cell GSH. Experientia. 1963;19:96–97. doi: 10.1007/BF02148042
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with folinphenol reagent. J Biol Chem. 1951;193:265–275.
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035–1042. doi: 10.1021/np9904509
  • Mahmoud AM, Ahmed OM, Ashour MB, et al. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int J Diabetes Dev Ctries. 2015;35:250–263. doi: 10.1007/s13410-014-0268-x
  • Ghorbani A, Rashidi R, Nick RS. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947–957. doi: 10.1016/j.biopha.2018.12.127
  • Sundaram R, Naresh R, Shanthi P, et al. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. Phytomedicine. 2013;20:577–584. doi: 10.1016/j.phymed.2013.01.006
  • Sundaram R, Shanthi P, Sachdanandam P. Effect of tangeretin, a polymethoxylated flavones on glucose metabolism in streptozotocininduced diabetic rats. Phytomedicine. 2014;21:793–799. doi: 10.1016/j.phymed.2014.01.007
  • Sundaram R, Naresh R, Ranadevan R, et al. Effect of iridoid glucoside on streptozotocin induced diabetic rats and its role in regulating carbohydrate metabolic enzymes. Eur J Pharmacol. 2012;674:460–467. doi: 10.1016/j.ejphar.2011.10.039
  • Sundaram R, Shanthi P, Sachdanandam P. Effect of iridoid glucoside on plasma lipid profile, tissue fatty acid changes, inflammatory cytokines, and GLUT4 expression in skeletal muscle of streptozotocin-induced diabetic rats. Mol Cell Biochem. 2013;380:43–55. doi: 10.1007/s11010-013-1656-0
  • Jensen J, Lai YC. Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, Adrenaline and role in insulin resistance. Arch Physiol Biochem. 2009;115:13–21. doi: 10.1080/13813450902778171
  • Chen WP, Chi TC, Chuang LM, et al. Resveratrol enhances insulin secretion by blocking KATP and KV channels of beta cells. Eur J Pharmacol. 2007;568:269–277. doi: 10.1016/j.ejphar.2007.04.062
  • Ravi K, Ramachandran B, Subramanian S. Effect of Eugenia jambolana seed kernel on antioxidant defence system in streptozotocin-induced diabetes in rats. Life Sci. 2004;75:2717–2731. doi: 10.1016/j.lfs.2004.08.005
  • Elalfy A, Ahmed A, Fatani A. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res. 2005;52:264–270. doi: 10.1016/j.phrs.2005.04.003
  • Kamalakkannan N, Prince P. Antihyperglycemic and antioxidant effect of rutin, a polyphenolic flavonoid in streptozotocininduced diabetic wistar rats. Basic Clin Pharmacol Toxicol. 2006;98:97–103. doi: 10.1111/j.1742-7843.2006.pto_241.x
  • Ayepola OR, Cerf ME, Brooks NL, et al. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine. 2014;21:1785–1793. doi: 10.1016/j.phymed.2014.09.006
  • Ye Y, Guo Y, Luo YT. Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of camellia oleifera. Int J Mol Sci. 2012;13:12401–12411. doi: 10.3390/ijms131012401