102
Views
1
CrossRef citations to date
0
Altmetric
Review

Novel carbonic anhydrase inhibitors for the treatment of Helicobacter pylori infection

Pages 523-532 | Received 05 Jan 2024, Accepted 21 Mar 2024, Published online: 27 Mar 2024

References

  • Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–1315. doi: 10.1016/S0140-6736(84)91816-6
  • Marshall BJ, Goodwin CS, Warren JR, et al. Prospective double-blind trial of duodenal ulcer relapse after eradication of campylobacter pylori. Lancet. 1988;2(8626–8627):1437–1442. doi: 10.1016/S0140-6736(88)90929-4
  • Malfertheiner P, Camargo MC, El-Omar E, et al. Helicobacter pylori infection. Nat Rev Dis Primers. 2023;9(1):19. doi: 10.1038/s41572-023-00431-8
  • Wang SW, Yu FJ, Kuo FC, et al. Rescue therapy for refractory Helicobacter pylori infection: current status and future concepts. Therap Adv Gastroenterol. 2023;16:17562848231170941. doi: 10.1177/17562848231170941
  • Sachs G, Wen Y, Scott DR. Gastric infection by Helicobacter pylori. Curr Gastroenterol Rep. 2009;11(6):455–461. doi: 10.1007/s11894-009-0070-y
  • Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention. Nat Rev Clin Oncol. 2023;20(5):338–349. doi: 10.1038/s41571-023-00747-0
  • Reyes VE. Helicobacter pylori and its role in gastric cancer. Microorganisms. 2023;11(5):1312. doi: 10.3390/microorganisms11051312
  • Xiong M, Yu C, Ren B, et al. Global knowledge mapping and emerging trends in Helicobacter pylori-related precancerous lesions of gastric cancer research: a bibliometric analysis from 2013 to 2023. Medicine (Baltimore). 2023;102(48):e36445. doi: 10.1097/MD.0000000000036445
  • Lim MCC, Jantaree P, Naumann M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer. 2023;9(8):679–690. doi: 10.1016/j.trecan.2023.04.012
  • Alfarouk KO, Bashir AHH, Aljarbou AN, et al. The possible role of Helicobacter pylori in gastric cancer and its management. Front Oncol. 2019 Feb 22;9:75. doi: 10.3389/fonc.2019.00075
  • Bulajic M, Panic N, Löhr JM. Helicobacter pylori and pancreatic diseases. World J Gastrointest Pathophysiol. 2014;5(4):380–383. doi: 10.4291/wjgp.v5.i4.380
  • Aramouni K, Assaf RK, Azar M, et al. Infection with Helicobacter pylori may predispose to atherosclerosis: role of inflammation and thickening of intima-media of carotid arteries. Front Pharmacol. 2023;14:1285754. doi: 10.3389/fphar.2023.1285754
  • Chen X, Peng R, Peng D, et al. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol. 2023;13:1282956. doi: 10.3389/fcimb.2023.1282956
  • Zhang J, Hu Y, Wu L, et al. Causal effect of gut microbiota on gastroduodenal ulcer: a two-sample Mendelian randomization study. Front Cell Infect Microbiol. 2023;13:1322537. doi: 10.3389/fcimb.2023.1322537
  • Thorell K, Muñoz-Ramírez ZY, Wang D, et al. The Helicobacter pylori genome project: insights into H. pylori population structure from analysis of a worldwide collection of complete genomes. Nat Commun. 2023;14(1):8184. doi: 10.1038/s41467-023-43562-y
  • Morishita S, Nishimori I, Minakuchi T, et al. Cloning, polymorphism, and inhibition of beta-carbonic anhydrase of Helicobacter pylori. J Gastroenterol. 2008;43(11):849–857. doi: 10.1007/s00535-008-2240-3
  • Abbondio M, Tanca A, De Diego L, et al. Metaproteomic assessment of gut microbial and host functional perturbations in Helicobacter pylori-infected patients subjected to an antimicrobial protocol. Gut Microbes. 2023;15(2):2291170. doi: 10.1080/19490976.2023.2291170
  • Buzás GM, Birinyi P. Newer, older, and alternative agents for the eradication of Helicobacter pylori infection: a narrative review. Antibiotics. 2023;12(6):946. doi: 10.3390/antibiotics12060946
  • Borao Laguna C, Lanas A. Advances in the pharmacotherapeutic management of refractory peptic ulcers. Expert Opin Pharmacother. 2023;24(7):825–833. doi: 10.1080/14656566.2023.2199922
  • Ho JJC, Argueta EA, Moss SF. Helicobacter pylori treatment regimens: a US perspective. Gastroenterol Hepatol (NY). 2022;18(6):313–319.
  • Shrestha AB, Pokharel P, Sapkota UH, et al. Drug resistance patterns of commonly used antibiotics for the treatment of Helicobacter pylori infection among south Asian countries: a systematic review and meta-analysis. Trop Med Infect Dis. 2023;8(3):172. doi: 10.3390/tropicalmed8030172
  • de Moraes Andrade PV, Monteiro YM, Chehter EZ. Third-line and rescue therapy for refractory Helicobacter pylori infection: a systematic review. World J Gastroenterol. 2023;29(2):390–409. doi: 10.3748/wjg.v29.i2.390
  • Rokkas T, Ekmektzoglou K. Advances in the pharmacological and regulatory management of multidrug resistant Helicobacter pylori. Expert Rev Clin Pharmacol. 2023;16(12):1229–1237. doi: 10.1080/17512433.2023.2282061
  • Hong TC, El-Omar EM, Kuo YT, et al. Asian pacific alliance on Helicobacter and microbiota. Primary antibiotic resistance of Helicobacter pylori in the Asia-Pacific region between 1990 and 2022: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2024;9(1):56–67. doi: 10.1016/S2468-1253(23)00281-9
  • Wei W, Wang Z, Li C, et al. Antibiotic resistance of Helicobacter pylori in Nanjing, China: a cross-section study from 2018 to 2023. Front Cell Infect Microbiol. 2023;13:1294379. doi: 10.3389/fcimb.2023.1294379
  • Srisuphanunt M, Wilairatana P, Kooltheat N, et al. Molecular mechanisms of antibiotic resistance and novel treatment strategies for Helicobacter pylori infections. Trop Med Infect Dis. 2023;8(3):163. doi: 10.3390/tropicalmed8030163
  • Vita NA, Anderson SM, LaFleur MD, et al. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Cur Opin Microbio. 2022;70:102203. doi: 10.1016/j.mib.2022.102203
  • Plotniece A, Sobolev A, Supuran CT, et al. Selected strategies to fight pathogenic bacteria. J Enzyme Inhibit Med Chem. 2023;38(1):2155816. doi: 10.1080/14756366.2022.2155816
  • Suerbaum S, Coombs N, Patel L, et al. Identification of Antimotilins, novel inhibitors of Helicobacter pylori flagellar motility that inhibit stomach colonization in a mouse Model. MBio. 2022;13(2):e0375521. doi: 10.1128/mbio.03755-21
  • Buzás GM, Supuran CT. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015). J Enzyme Inhib Med Chem. 2016;31(4):527–533. doi: 10.3109/14756366.2015.1051042
  • Chirica LC, Elleby B, Lindskog S. Cloning, expression and some properties of alpha-carbonic anhydrase from Helicobacter pylori. Biochim Biophys Acta. 2001;1544(1–2):55–63. doi: 10.1016/S0167-4838(00)00204-1
  • Chirica LC, Petersson C, Hurtig M, et al. Expression and localization of alpha- and beta-carbonic anhydrase in Helicobacter pylori. Biochim Biophys Acta. 2002;1601(2):192–199. doi: 10.1016/S1570-9639(02)00467-3
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi: 10.1038/nrd2467
  • Supuran CT. Carbonic anhydrase versatility: from pH regulation to CO2 sensing and metabolism. Front Mol Biosci. 2023 Nov 10;10:1326633. doi: 10.3389/fmolb.2023.1326633
  • Supuran CT. Carbonic anhydrases and metabolism. Metabolites. 2018;8(2):25. doi: 10.3390/metabo8020025
  • Marcus EA, Moshfegh AP, Sachs G, et al. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol. 2005;187(2):729–738. doi: 10.1128/JB.187.2.729-738.2005
  • Scott DR, Marcus EA, Wen Y, et al. Cytoplasmic histidine kinase (HP0244)-regulated assembly of urease with UreI, a channel for urea and its metabolites, CO2, NH3, and NH4(+), is necessary for acid survival of Helicobacter pylori. J Bacteriol. 2010;192(1):94–103. doi: 10.1128/JB.00848-09
  • Wen Y, Feng J, Scott DR, et al. The HP0165-HP0166 two-component system (ArsRS) regulates acid-induced expression of HP1186 alpha-carbonic anhydrase in Helicobacter pylori by activating the pH-dependent promoter. J Bacteriol. 2007;189(6):2426–2434. doi: 10.1128/JB.01492-06
  • Wen Y, Feng J, Scott DR, et al. Involvement of the HP0165-HP0166 two-component system in expression of some acidic-pH-upregulated genes of Helicobacter pylori. J Bacteriol. 2006;188(5):1750–1761. doi: 10.1128/JB.188.5.1750-1761.2006
  • Sachs G, Weeks DL, Wen Y, et al. Acid acclimation by Helicobacter pylori. Physiology. 2005 Dec;20(6):429–438. doi: 10.1152/physiol.00032.2005
  • Bury-Moné S, Mendz GL, Ball GE, et al. Roles of alpha and beta carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa. Infect Immun. 2008;76(2):497–509. doi: 10.1128/IAI.00993-07
  • Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets. 2023;27(10):897–910. doi: 10.1080/14728222.2023.2263914
  • Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem. 2021 Oct;13(19):1619–1622. doi: 10.4155/fmc-2021-0207
  • Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat. 2020;30(12):963–982. doi: 10.1080/13543776.2020.1811853
  • Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem. 2021;36(1):1988–1995. doi: 10.1080/14756366.2021.1972995
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond). 2021;135(10):1233–1249. doi: 10.1042/CS20210040
  • Fantacuzzi M, D’Agostino I, Carradori S, et al. Benzenesulfonamide derivatives as Vibrio cholerae carbonic anhydrases inhibitors: a computational-aided insight in the structural rigidity-activity relationships. J Enzyme Inhib Med Chem. 2023;38(1):2201402. doi: 10.1080/14756366.2023.2201402
  • An W, Holly KJ, Nocentini A, et al. Structure-activity relationship studies for inhibitors for vancomycin-resistant enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):1838–1844. doi: 10.1080/14756366.2022.2092729
  • Abutaleb NS, Elhassanny AEM, Nocentini A, et al. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):51–61. doi: 10.1080/14756366.2021.1991336
  • Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis. 2021;7(7):1969–1984. doi: 10.1021/acsinfecdis.1c00055
  • Abutaleb NS, Elhassanny AEM, Seleem MN. In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microb Pathog. 2022;164:105454. doi: 10.1016/j.micpath.2022.105454
  • Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem. 2020;63(17):9540–9562. doi: 10.1021/acs.jmedchem.0c00734
  • Chilambi GS, Wang YH, Wallace NR, et al. Carbonic anhydrase inhibition as a target for antibiotic synergy in enterococci. Microbiol Spectr. 2023;11(4):e0396322. doi: 10.1128/spectrum.03963-22
  • Abutaleb NS, Shrinidhi A, Bandara AB, et al. Evaluation of 1,3,4-thiadiazole carbonic anhydrase inhibitors for gut decolonization of vancomycin-resistant enterococci. ACS Med Chem Lett. 2023;14(4):487–492. doi: 10.1021/acsmedchemlett.3c00032
  • Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem. 2021;36(1):561–580. doi: 10.1080/14756366.2021.1882453
  • Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett. 2023;93:129411. doi: 10.1016/j.bmcl.2023.129411
  • Giovannuzzi S, Hewitt CS, Nocentini A, et al. Inhibition studies of bacterial α-carbonic anhydrases with phenols. J Enzyme Inhib Med Chem. 2022;37(1):666–671. doi: 10.1080/14756366.2022.2038592
  • Nocentini A, Osman SM, Del Prete S, et al. Extending the γ-class carbonic anhydrases inhibition profiles with phenolic compounds. Bioorganic Chem. 2019;93:103336. doi: 10.1016/j.bioorg.2019.103336
  • Supuran CT. Carbonic anhydrase inhibitors from Marine natural products. Mar Drugs. 2022;20(11):721. doi: 10.3390/md20110721
  • Cau Y, Mori M, Supuran CT, et al. Mycobacterial carbonic anhydrase inhibition with phenolic acids and esters: kinetic and computational investigations. Org Biomol Chem. 2016;14(35):8322–8330. doi: 10.1039/C6OB01477A
  • Giovannuzzi S, Abutaleb NS, Hewitt CS, et al. Dithiocarbamates effectively inhibit the α-carbonic anhydrase from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):1–8. doi: 10.1080/14756366.2021.1988945
  • Aspatwar A, Hammarén M, Koskinen S, et al. β-CA-specific inhibitor dithiocarbamate Fc14-584B: a novel antimycobacterial agent with potential to treat drug-resistant tuberculosis. J Enzyme Inhib Med Chem. 2017;32(1):832–840. doi: 10.1080/14756366.2017.1332056
  • Giovannuzzi S, Marapaka AK, Abutaleb NS, et al. Inhibition of pathogenic bacterial carbonic anhydrases by monothiocarbamates. J Enzyme Inhib Med Chem. 2023;38(1):2284119. doi: 10.1080/14756366.2023.2284119
  • Giovannuzzi S, Hewitt CS, Nocentini A, et al. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):333–338. doi: 10.1080/14756366.2021.2012174
  • Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem. 2020;35(1):1462–1470. doi: 10.1080/14756366.2020.1788009
  • Puscas I. Treatment of gastroduodenal ulcers with carbonic anhydrase inhibitors. Ann NY Acad Sci. 1984;429(1):587–591. doi: 10.1111/j.1749-6632.1984.tb12392.x
  • Puscas I, Buzás G. Treatment of duodenal ulcers with ethoxzolamide, an inhibitor of gastric mucosa carbonic anhydrase. Int J Clin Pharmacol Ther Toxicol. 1986;24(2):97–99.
  • Nishimori I, Minakuchi T, Morimoto K, et al. Carbonic anhydrase inhibitors: DNA cloning and inhibition studies of the alpha-carbonic anhydrase from Helicobacter pylori, a new target for developing sulfonamide and sulfamate gastric drugs. J Med Chem. 2006;49(6):2117–2126. doi: 10.1021/jm0512600
  • Nishimori I, Vullo D, Minakuchi T, et al. Carbonic anhydrase inhibitors: cloning and sulfonamide inhibition studies of a carboxyterminal truncated alpha-carbonic anhydrase from Helicobacter pylori. Bioorg Med Chem Lett. 2006;16(8):2182–2188. doi: 10.1016/j.bmcl.2006.01.044
  • Nishimori I, Minakuchi T, Kohsaki T, et al. Carbonic anhydrase inhibitors: the beta-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg Med Chem Lett. 2007;17(13):3585–3594. doi: 10.1016/j.bmcl.2007.04.063
  • Nishimori I, Onishi S, Takeuchi H, et al. The alpha and beta classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des. 2008;14(7):622–630. doi: 10.2174/138161208783877875
  • Modak JK, Liu YC, Machuca MA, et al. Structural basis for the inhibition of Helicobacter pylori α-carbonic anhydrase by sulfonamides. PLoS One. 2015;10(5):e0127149. doi: 10.1371/journal.pone.0127149
  • Modak JK, Liu YC, Supuran CT, et al. Structure-activity relationship for sulfonamide inhibition of Helicobacter pylori α-carbonic anhydrase. J Med Chem. 2016;59(24):11098–11109. doi: 10.1021/acs.jmedchem.6b01333
  • Compostella ME, Berto P, Vallese F, et al. Structure of α-carbonic anhydrase from the human pathogen Helicobacter pylori. Acta Crystallogr F Struct Biol Commun. 2015;71(Pt 8):1005–1011. doi: 10.1107/S2053230X15010407
  • Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112(8):4421–4468. doi: 10.1021/cr200176r
  • Modak JK, Tikhomirova A, Gorrell RJ, et al. Anti-Helicobacter pylori activity of ethoxzolamide. J Enzyme Inhib Med Chem. 2019;34(1):1660–1667. doi: 10.1080/14756366.2019.1663416
  • Rahman MM, Tikhomirova A, Modak JK, et al. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog. 2020;12(1):20. doi: 10.1186/s13099-020-00358-5
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360. doi: 10.3109/14756366.2015.1122001
  • Campestre C, De Luca V, Carradori S, et al. Carbonic anhydrases: new perspectives on protein functional role and inhibition in Helicobacter pylori. Front Microbiol. 2021;12:629163. doi: 10.3389/fmicb.2021.629163
  • Grande R, Carradori S, Puca V, et al. Selective inhibition of Helicobacter pylori carbonic anhydrases by Carvacrol and thymol could impair biofilm production and the release of outer membrane vesicles. Int J Mol Sci. 2021;22(21):11583. doi: 10.3390/ijms222111583
  • Puca V, Turacchio G, Marinacci B, et al. Antimicrobial and antibiofilm activities of carvacrol, amoxicillin and salicylhydroxamic acid alone and in combination vs. Helicobacter pylori: towards a new multi-targeted therapy. Int J Mol Sci. 2023;24(5):4455. doi: 10.3390/ijms24054455
  • Ronci M, Del Prete S, Puca V, et al. Identification and characterization of the α-CA in the outer membrane vesicles produced by Helicobacter pylori. J Enzyme Inhib Med Chem. 2019;34(1):189–195. doi: 10.1080/14756366.2018.1539716
  • Maresca A, Vullo D, Scozzafava A, et al. Inhibition of the alpha- and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions. J Enzyme Inhib Med Chem. 2013;28(2):388–391. doi: 10.3109/14756366.2011.649268
  • Angeli A, Ferraroni M, Supuran CT. Famotidine, an antiulcer agent, strongly inhibits Helicobacter pylori and human carbonic anhydrases. ACS Med Chem Lett. 2018;9(10):1035–1038. doi: 10.1021/acsmedchemlett.8b00334
  • Angeli A, Pinteala M, Maier SS, et al. Inhibition of bacterial α-, β- and γ-class carbonic anhydrases with selenazoles incorporating benzenesulfonamide moieties. J Enzyme Inhib Med Chem. 2019;34(1):244–249. doi: 10.1080/14756366.2018.1547287
  • Benito G, D’Agostino I, Carradori S, et al. Erlotinib-containing benzenesulfonamides as anti-Helicobacter pylori agents through carbonic anhydrase inhibition. Future Med Chem. 2023;15(20):1865–1883. doi: 10.4155/fmc-2023-0208
  • Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. X-ray crystal studies of the carbonic anhydrase II-trithiocarbonate adduct–an inhibitor mimicking the sulfonamide and urea binding to the enzyme. Bioorg Med Chem Lett. 2010;20(2):474–478. doi: 10.1016/j.bmcl.2009.11.124
  • Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of transmembrane isoforms IX, XII, and XIV with less investigated anions including trithiocarbonate and dithiocarbamate. Bioorg Med Chem Lett. 2010;20(5):1548–1550. doi: 10.1016/j.bmcl.2010.01.081
  • Campoli-Richards DM, Clissold SP. Famotidine. Pharmacodynamic and pharmacokinetic properties and a preliminary review of its therapeutic use in peptic ulcer disease and Zollinger-Ellison syndrome. Drugs. 1986;32(3):197–221. doi: 10.2165/00003495-198632030-00001
  • Howden CW, Tytgat GN. The tolerability and safety profile of famotidine. Clin Ther. 1996;18(1):36–54. doi: 10.1016/S0149-2918(96)80177-9
  • Kim J, Kim N, Park JH, et al. The effect of Helicobacter pylori on epidermal growth factor receptor-induced signal transduction and the preventive effect of celecoxib in gastric cancer cells. Gut Liver. 2013;7(5):552–559. doi: 10.5009/gnl.2013.7.5.552
  • Chichirau BE, Diechler S, Posselt G, et al. Tyrosine kinases in Helicobacter pylori infections and gastric cancer. Toxins (Basel). 2019;11(10):591. doi: 10.3390/toxins11100591
  • Piperdi B, Perez-Soler R. Role of Erlotinib in the treatment of non-small cell lung cancer: clinical outcomes in wild-type epidermal growth factor receptor patients. Drugs. 2012;72(1):11–19. doi: 10.2165/1163018-S0-000000000-00000
  • Starling N, Neoptolemos J, Cunningham D. Role of erlotinib in the management of pancreatic cancer. Ther Clin Risk Manag. 2006;2(4):435. doi: 10.2147/tcrm.2006.2.4.435
  • Angeli A, Supuran CT. Click chemistry approaches for developing carbonic anhydrase inhibitors and their applications. J Enzyme Inhib Med Chem. 2023;38(1):2166503. doi: 10.1080/14756366.2023.2166503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.