126
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity

, &
Pages 757-773 | Received 04 Mar 2024, Accepted 03 Jul 2024, Published online: 17 Jul 2024

References

  • World Obesity Atlas. 2023.
  • Bailey CJ, Flatt PR, Conlon JM. An update on peptide-based therapies for type 2 diabetes and obesity. Peptides. 2023 Mar;161:170939. doi: 10.1016/j.peptides.2023.170939
  • Lafferty RA, Flatt PR, Irwin N. GLP-1/GIP analogs: potential impact in the landscape of obesity pharmacotherapy. Expert Opin Pharmacother. 2023 Apr;24(5):587–597. doi: 10.1080/14656566.2023.2192865
  • Rehfeld JF. The origin and understanding of the incretin concept. Front Endocrinol (Lausanne). 2018;9:387. doi: 10.3389/fendo.2018.00387
  • Jastreboff AM, Kushner RF. New frontiers in obesity treatment: GLP-1 and nascent nutrient-stimulated hormone-based therapeutics. Annu Rev Med. 2023 Jan 27;74(1):125–139. doi: 10.1146/annurev-med-043021-014919
  • Newsome PN, Ambery P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J Hepatol. 2023 Dec;79(6):1557–1565. doi: 10.1016/j.jhep.2023.07.033
  • Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023 Dec 14;389(24):2221–2232. doi: 10.1056/NEJMoa2307563
  • Mima A, Gotoda H, Lee R, et al. Effects of incretin-based therapeutic agents including tirzepatide on renal outcomes in patients with type 2 diabetes: a systemic review and meta-analysis. Metabol Open. 2023 Mar;17:100236. doi: 10.1016/j.metop.2023.100236
  • Lau J, Bloch P, Schaffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015 Sep 24;58(18):7370–7380. doi: 10.1021/acs.jmedchem.5b00726
  • Kim KS, Seeley RJ, Sandoval DA. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci. 2018 Apr;19(4):185–196. doi: 10.1038/nrn.2018.8
  • Eissele R, Goke R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest. 1992 Apr;22(4):283–291. doi: 10.1111/j.1365-2362.1992.tb01464.x
  • Diakogiannaki E, Gribble FM, Reimann F. Nutrient detection by incretin hormone secreting cells. Physiol Behav. 2012 Jun 6;106(3):387–393. doi: 10.1016/j.physbeh.2011.12.001
  • Hansen LS, Sparre-Ulrich AH, Christensen M, et al. N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor. Br J Pharmacol. 2016 Mar;173(5):826–838. doi: 10.1111/bph.13384
  • Costanzo L. Costanzo physiology. 7th ed. Philadelphia: Elsevier, Inc; 2021.
  • Buchan AM, Polak JM, Capella C, et al. Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry. 1978 Jun 2;56(1):37–44. doi: 10.1007/BF00492251
  • Gupta K, Raja A. Physiology, gastric inhibitory peptide. Treasure Island (FL): StatPearls; 2023.
  • Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev. 1995 Jun;16(3):390–410. doi: 10.1210/edrv-16-3-390
  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131–2157. doi: 10.1053/j.gastro.2007.03.054
  • Vilsboll T, Agerso H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003 Jan;88(1):220–224. doi: 10.1210/jc.2002-021053
  • Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016 Jun;4(6):525–536. doi: 10.1016/S2213-8587(15)00482-9
  • Brown JC. Gastric inhibitory polypeptide. Monogr Endocrinol. 1982;24:III-XI, 1–88.
  • Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973 Nov;37(5):826–828. doi: 10.1210/jcem-37-5-826
  • Nauck M, Schmidt WE, Ebert R, et al. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab. 1989 Sep;69(3):654–662. doi: 10.1210/jcem-69-3-654
  • Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993 Dec;133(6):2861–2870. doi: 10.1210/endo.133.6.8243312
  • Zhang Q, Delessa CT, Augustin R, et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 2021 Apr 6;33(4):833–844 e5. doi: 10.1016/j.cmet.2021.01.015
  • Wang Y, Montrose-Rafizadeh C, Adams L, et al. GIP regulates glucose transporters, hexokinases, and glucose-induced insulin secretion in RIN 1046-38 cells. Mol Cell Endocrinol. 1996 Jan 15;116(1):81–87. doi: 10.1016/0303-7207(95)03701-2
  • Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993 Jan;91(1):301–307. doi: 10.1172/JCI116186
  • Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993 Aug;36(8):741–744. doi: 10.1007/BF00401145
  • Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab. 2002 Mar;87(3):1239–1246. doi: 10.1210/jcem.87.3.8355
  • Pederson RA, Brown JC. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology. 1978 Aug;103(2):610–615. doi: 10.1210/endo-103-2-610
  • Christensen MB, Calanna S, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab. 2014 Mar;99(3):E418–26. doi: 10.1210/jc.2013-3644
  • Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009 Feb;52(2):199–207. doi: 10.1007/s00125-008-1195-5
  • Creutzfeldt W, Ebert R, Willms B, et al. Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia. 1978 Jan 14;14(1):15–24. doi: 10.1007/BF00429703
  • Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987 Jan 26;211(2):169–174. doi: 10.1016/0014-5793(87)81430-8
  • Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987 Feb;79(2):616–619. doi: 10.1172/JCI112855
  • Vilsboll T, Krarup T, Madsbad S, et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept. 2003 Jul 15;114(2–3):115–121. doi: 10.1016/S0167-0115(03)00111-3
  • Ma X, Bruning J, Ashcroft FM. Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons. J Neurosci. 2007 Jul 4;27(27):7125–7129. doi: 10.1523/JNEUROSCI.1025-07.2007
  • Raufman JP, Singh L, Singh G, et al. Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4. J Biol Chem. 1992 Oct 25;267(30):21432–21437. doi: 10.1016/S0021-9258(19)36628-1
  • Schirra J, Sturm K, Leicht P, et al. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest. 1998 Apr 1;101(7):1421–1430. doi: 10.1172/JCI1349
  • Salehi M, Vahl TP, D’Alessio DA. Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J Clin Endocrinol Metab. 2008 Dec;93(12):4909–4916. doi: 10.1210/jc.2008-0605
  • Nauck MA, Muller TD. Incretin hormones and type 2 diabetes. Diabetologia. 2023 Oct;66(10):1780–1795. doi: 10.1007/s00125-023-05956-x
  • Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018 Jul;14(7):390–403. doi: 10.1038/s41574-018-0016-2
  • Holst JJ, Windelov JA, Boer GA, et al. Searching for the physiological role of glucose-dependent insulinotropic polypeptide. J Diabetes Investig. 2016 Apr;7 Suppl 1(Suppl 1):8–12. doi: 10.1111/jdi.12488
  • Frias JP, Bastyr EJ 3rd, Vignati L, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 2017 Aug 1;26(2):343–352 e2. doi: 10.1016/j.cmet.2017.07.011
  • Nauck MA, Meier JJ. GIP and GLP-1: stepsiblings rather than monozygotic twins within the incretin family. Diabetes. 2019 May;68(5):897–900. doi: 10.2337/dbi19-0005
  • Wu T, Rayner CK, Young RL, et al. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol. 2013 Dec;13(6):928–934. doi: 10.1016/j.coph.2013.09.002
  • Vilsboll T, Krarup T, Madsbad S, et al. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia. 2002 Aug;45(8):1111–1119. doi: 10.1007/s00125-002-0878-6
  • Bergmann NC, Gasbjerg LS, Heimburger SM, et al. No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-like peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care. 2020 Mar;43(3):588–596. doi: 10.2337/dc19-0578
  • Meier JJ, Gallwitz B, Kask B, et al. Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide in patients with type 2 diabetes and healthy control subjects. Diabetes. 2004 Dec;53 Suppl 3(suppl_3):S220–4. doi: 10.2337/diabetes.53.suppl_3.S220
  • Wu T, Ma J, Bound MJ, et al. Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes. 2014 Aug;63(8):2776–2787. doi: 10.2337/db13-1627
  • Yip RG, Wolfe MM. GIP biology and fat metabolism. Life Sci. 2000;66(2):91–103. doi: 10.1016/S0024-3205(99)00314-8
  • Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002 Jul;8(7):738–42C. doi: 10.1038/nm727
  • Turcot V, Lu Y, Highland HM, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018 Jan;50(1):26–41. doi: 10.1038/s41588-017-0011-x
  • Killion EA, Wang J, Yie J, et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci Transl Med. 2018 Dec 19;10(472). doi: 10.1126/scitranslmed.aat3392
  • Mroz PA, Finan B, Gelfanov V, et al. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab. 2019 Feb;20:51–62. doi: 10.1016/j.molmet.2018.12.001
  • Yang B, Gelfanov VM, El K, et al. Discovery of a potent GIPR peptide antagonist that is effective in rodent and human systems. Mol Metab. 2022 Dec;66:101638. doi: 10.1016/j.molmet.2022.101638
  • Adriaenssens AE, Biggs EK, Darwish T, et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 2019 Nov 5;30(5):987–996 e6. doi: 10.1016/j.cmet.2019.07.013
  • Gabe MBN, Sparre-Ulrich AH, Pedersen MF, et al. Human GIP(3-30)NH(2) inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochem Pharmacol. 2018 Apr;150:97–107. doi: 10.1016/j.bcp.2018.01.040
  • Killion EA, Chen M, Falsey JR, et al. Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nat Commun. 2020 Oct 5;11(1):4981. doi: 10.1038/s41467-020-18751-8
  • Gabe MBN, van der Velden WJC, Gadgaard S, et al. Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol. 2020 Jun;126 Suppl 6(Suppl 6):122–132. doi: 10.1111/bcpt.13289
  • Ismail S, Gherardi MJ, Froese A, et al. Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem Pharmacol. 2016 Nov 15;120:33–45. doi: 10.1016/j.bcp.2016.09.009
  • Ismail S, Dubois-Vedrenne I, Laval M, et al. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist. Mol Cell Endocrinol. 2015 Oct 15;414:202–215. doi: 10.1016/j.mce.2015.07.001
  • Holst JJ, Rosenkilde MM. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J Clin Endocrinol Metab. 2020 Aug 1;105(8):e2710–6. doi: 10.1210/clinem/dgaa327
  • Frias JP, Wynne AG, Matyjaszek-Matuszek B, et al. Efficacy and safety of an expanded dulaglutide dose range: a phase 2, placebo-controlled trial in patients with type 2 diabetes using metformin. Diabetes Obes Metab. 2019 Sep;21(9):2048–2057. doi: 10.1111/dom.13764
  • Hager MV, Clydesdale L, Gellman SH, et al. Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem Pharmacol. 2017 Jul 15;136:99–108. doi: 10.1016/j.bcp.2017.03.018
  • Fremaux J, Venin C, Mauran L, et al. Ureidopeptide GLP-1 analogues with prolonged activity in vivo via signal bias and altered receptor trafficking. Chem Sci. 2019 Nov 14;10(42):9872–9879. doi: 10.1039/C9SC02079A
  • Jones B, Buenaventura T, Kanda N, et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat Commun. 2018 Apr 23;9(1):1602. doi: 10.1038/s41467-018-03941-2
  • Al-Zamel N, Al-Sabah S, Luqmani Y, et al. A dual GLP-1/GIP receptor agonist does not antagonize glucagon at its receptor but may act as a biased agonist at the GLP-1 receptor. Int J Mol Sci. 2019 Jul 19;20(14):3532. doi: 10.3390/ijms20143532
  • Willard FS, Douros JD, Gabe MB, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020 Sep 3;5(17). doi: 10.1172/jci.insight.140532
  • Rudovich N, Kaiser S, Engeli S, et al. GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regul Pept. 2007 Aug 16;142(3):138–145. doi: 10.1016/j.regpep.2007.02.006
  • DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009. Diabetologia. 2010 Jul;53(7):1270–1287. doi: 10.1007/s00125-010-1684-1
  • Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019 Apr;20(4):242–258. doi: 10.1038/s41580-018-0093-z
  • Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2007 Jun;65(6 Pt 2):S7–12. doi: 10.1301/nr.2007.jun.S7-S12
  • Oben J, Morgan L, Fletcher J, et al. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol. 1991 Aug;130(2):267–272. doi: 10.1677/joe.0.1300267
  • Kim SJ, Nian C, McIntosh CH. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem. 2007 Mar 23;282(12):8557–8567. doi: 10.1074/jbc.M609088200
  • Wasada T, McCorkle K, Harris V, et al. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest. 1981 Oct;68(4):1106–1107. doi: 10.1172/JCI110335
  • Beaudry JL, Kaur KD, Varin EM, et al. Physiological roles of the GIP receptor in murine brown adipose tissue. Mol Metab. 2019 Oct;28:14–25. doi: 10.1016/j.molmet.2019.08.006
  • Asmar M, Asmar A, Simonsen L, et al. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes. 2017 Sep;66(9):2363–2371. doi: 10.2337/db17-0480
  • Weaver RE, Donnelly D, Wabitsch M, et al. Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model. Int J Obes (Lond). 2008 Nov;32(11):1705–1711. doi: 10.1038/ijo.2008.148
  • Song DH, Getty-Kaushik L, Tseng E, et al. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology. 2007 Dec;133(6):1796–1805. doi: 10.1053/j.gastro.2007.09.005
  • Campbell JE, Beaudry JL, Svendsen B, et al. GIPR is predominantly localized to nonadipocyte cell types within white adipose tissue. Diabetes. 2022 May 1;71(5):1115–1127. doi: 10.2337/db21-1166
  • Asmar M, Simonsen L, Asmar A, et al. Insulin plays a permissive role for the vasoactive effect of GIP regulating adipose tissue metabolism in humans. J Clin Endocrinol Metab. 2016 Aug;101(8):3155–3162. doi: 10.1210/jc.2016-1933
  • Campbell JE, Ussher JR, Mulvihill EE, et al. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med. 2016 Jan;22(1):84–90. doi: 10.1038/nm.3997
  • Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes. 1979 Dec;28(12):1141–1142. doi: 10.2337/diab.28.12.1141
  • Starich GH, Bar RS, Mazzaferri EL. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes. Am J Physiol. 1985 Dec;249(6 Pt 1):E603–7. doi: 10.1152/ajpendo.1985.249.6.E603
  • Mohammad S, Ramos LS, Buck J, et al. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110beta isoform of phosphatidylinositol 3-kinase. J Biol Chem. 2011 Dec 16;286(50):43062–43070. doi: 10.1074/jbc.M111.289009
  • Kim SJ, Nian C, Karunakaran S, et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One. 2012;7(7):e40156. doi: 10.1371/journal.pone.0040156
  • Varol C, Zvibel I, Spektor L, et al. Long-acting glucose-dependent insulinotropic polypeptide ameliorates obesity-induced adipose tissue inflammation. J Immunol. 2014 Oct 15;193(8):4002–4009. doi: 10.4049/jimmunol.1401149
  • Wilson JM, Nikooienejad A, Robins DA, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020 Dec;22(12):2451–2459. doi: 10.1111/dom.14174
  • White PJ, McGarrah RW, Herman MA, et al. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021 Oct;52:101261. doi: 10.1016/j.molmet.2021.101261
  • Samms RJ, Zhang G, He W, et al. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol Metab. 2022 Oct;64:101550. doi: 10.1016/j.molmet.2022.101550
  • Lopez-Soriano FJ, Fernandez-Lopez JA, Mampel T, et al. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation. Biochem J. 1988 Jun 15;252(3):843–849. doi: 10.1042/bj2520843
  • Park S, Oh S, Kim EK. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J Biol Chem. 2022 Dec;298(12):102682. doi: 10.1016/j.jbc.2022.102682
  • Kagdi S, Lyons SA, Beaudry JL. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue. J Endocrinol. 2024 Jun 1;261(3). doi: 10.1530/JOE-23-0361
  • Kaplan AM, Vigna SR. Gastric inhibitory polypeptide (GIP) binding sites in rat brain. Peptides. 1994;15(2):297–302. doi: 10.1016/0196-9781(94)90016-7
  • NamKoong C, Kim MS, Jang BT, et al. Central administration of GLP-1 and GIP decreases feeding in mice. Biochem Biophys Res Commun. 2017 Aug 19;490(2):247–252. doi: 10.1016/j.bbrc.2017.06.031
  • Ambati S, Duan J, Hartzell DL, et al. GIP-dependent expression of hypothalamic genes. Physiol Res. 2011;60(6):941–950. doi: 10.33549/physiolres.932151
  • Kaneko K, Fu Y, Lin HY, et al. Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition. J Clin Invest. 2019 Aug 12;129(9):3786–3791. doi: 10.1172/JCI126107
  • Adriaenssens A, Broichhagen J, de Bray A, et al. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight. 2023 May 22;8(10). doi: 10.1172/jci.insight.164921
  • Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab. 2020 Jun;31(6):410–421. doi: 10.1016/j.tem.2020.02.006
  • Rhea EM, Babin A, Thomas P, et al. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of alzheimer’s and parkinson’s diseases. Tissue Barriers. 2023 Dec;14:2292461. doi: 10.1080/21688370.2023.2292461
  • Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013 Oct 30;5(209):209ra151. doi: 10.1126/scitranslmed.3007218
  • Schmitt C, Portron A, Jadidi S, et al. Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes Obes Metab. 2017 Oct;19(10):1436–1445. doi: 10.1111/dom.13024
  • Portron A, Jadidi S, Sarkar N, et al. Pharmacodynamics, pharmacokinetics, safety and tolerability of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 after single subcutaneous administration in healthy subjects. Diabetes Obes Metab. 2017 Oct;19(10):1446–1453. doi: 10.1111/dom.13025
  • Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018 Dec;18:3–14. doi: 10.1016/j.molmet.2018.09.009
  • Rosenstock J, Wysham C, Frias JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. The Lancet. 2021 Jul 10;398(10295):143–155. doi: 10.1016/S0140-6736(21)01324-6
  • Sun B, Willard FS, Feng D, et al. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc Natl Acad Sci USA 2022 Mar 29;119(13):e2116506119. doi: 10.1073/pnas.2116506119
  • El K, Douros JD, Willard FS, et al. The incretin co-agonist tirzepatide requires GIPR for hormone secretion from human islets. Nat Metab. 2023 Jun;5(6):945–954. doi: 10.1038/s42255-023-00811-0
  • Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022 Jul 21;387(3):205–216. doi: 10.1056/NEJMoa2206038
  • Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. The Lancet. 2023 Aug 19;402(10402):613–626. doi: 10.1016/S0140-6736(23)01200-X
  • Wadden TA, Chao AM, Machineni S, et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT-3 phase 3 trial. Nat Med. 2023 Nov;29(11):2909–2918. doi: 10.1038/s41591-023-02597-w
  • Aronne LJ, Sattar N, Horn DB, et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA. 2024 Jan 2;331(1):38–48. doi: 10.1001/jama.2023.24945
  • Lilly reports strong fourth-quarter 2023 financial results and provides 2024 guidance [internet]. (Indiana)polis: PRNewswire; 2024 Feb 6; [ 8]. Available from: investor.lilly.com/node/50281/pdf
  • McDermid E. A quick guide to the SURPASS and SURMOUNT trials: medicine matters diabetes. 2020 [cited 2024 Feb 22]. Available from: https://diabetes.medicinematters.com/en-GB/tirzepatide/type-2-diabetes/a-quick-guide-to-the-surpass-and-surmount-trials/18478154
  • Chakravarthy M, ARGÜELLES-TELLO FA, Ala SUN, et al. 75-LB: CT-388, a novel once-weekly dual GLP-1 and GIP receptor modulator, is safe, well-tolerated, and produces more than 8% weight loss in four weeks in overweight and obese adults. Diabetes. 2023;72(Supplement_1). doi: 10.2337/db23-75-LB
  • Chakravarthy M, Hernandez M, Elliott M, et al. 774-P: weight-independent effects of CT-868, a signaling biased dual GLP-1/GIP receptor modulator, on glucose homeostasis in overweight and obese adults with type 2 diabetes. Diabetes. 2023;72(Supplement_1). doi: 10.2337/db23-774-P
  • Viking therapeutics announces positive top-line results from phase 2 VENTURE trial of dual GLP-1/GIP receptor agonist VK2735 in patients with obesity [internet]. San Diego: PRNeswire; 2024 Feb 27. Available from: https://ir.vikingtherapeutics.com/2024-02-27-Viking-Therapeutics-Announces-Positive-Top-Line-Results-from-Phase-2-VENTURE-Trial-of-Dual-GLP-1-GIP-Receptor-Agonist-VK2735-in-Patients-with-Obesity
  • Viking therapeutics announces results from phase 1 clinical trial of oral tablet formulation of dual GLP-1/GIP receptor agonist VK2735 [Internet]. 2024 Mar 26. Available from: https://ir.vikingtherapeutics.com/2024-03-26-Viking-Therapeutics-Announces-Results-from-Phase-1-Clinical-Trial-of-Oral-Tablet-Formulation-of-Dual-GLP-1-GIP-Receptor-Agonist-VK2735
  • He K, F WEI, Chen H, et al. 763-P: safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of a dual GLP-1/GIP receptor agonist (HRS9531) in healthy subjects – a phase 1, randomized, double-blind, placebo-controlled, single and multiple ascending dose (SAD and MAD) study. Diabetes. 2023;72(Supplement_1). doi: 10.2337/db23-763-P
  • Ma T, Lu W, Wang Y, et al. An oral GLP-1 and GIP dual receptor agonist improves metabolic disorders in high fat-fed mice. Eur J Pharmacol. 2022 Jan 5;914:174635. doi: 10.1016/j.ejphar.2021.174635
  • Liu C, Li C, Cai X, et al. Discovery of a novel GLP-1/GIP dual receptor agonist CY-5 as long-acting hypoglycemic, anti-obesity agent. Bioorg Chem. 2021 Jan;106:104492. doi: 10.1016/j.bioorg.2020.104492
  • Novikoff A, Muller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides. 2023 Jul;165:171003. doi: 10.1016/j.peptides.2023.171003
  • Authier F, Desbuquois B. Glucagon receptors. Cell Mol Life Sci. 2008 Jun;65(12):1880–1899. doi: 10.1007/s00018-008-7479-6
  • Cheng C, Jabri S, Taoka BM, et al. Small molecule glucagon receptor antagonists: an updated patent review (2015-2019). Expert Opin Ther Pat. 2020 Jul;30(7):509–526. doi: 10.1080/13543776.2020.1769600
  • Al-Massadi O, Ferno J, Dieguez C, et al. Glucagon control on food intake and energy balance. Int J Mol Sci. 2019 Aug 11;20(16):3905. doi: 10.3390/ijms20163905
  • Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol. 1993 Jan;264(1 Pt 2):R116–22. doi: 10.1152/ajpregu.1993.264.1.R116
  • Inokuchi A, Oomura Y, Nishimura H. Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiol Behav. 1984 Sep;33(3):397–400. doi: 10.1016/0031-9384(84)90160-4
  • Kleinert M, Sachs S, Habegger KM, et al. Glucagon regulation of energy expenditure. Int J Mol Sci. 2019 Oct 30;20(21):5407. doi: 10.3390/ijms20215407
  • Ahren B, Yamada Y, Seino Y. The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP-1 receptor knockout mice. Peptides. 2021 Jan;135:170434. doi: 10.1016/j.peptides.2020.170434
  • Coskun T, Urva S, Roell WC, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. Cell Metab. 2022 Sep 6;34(9):1234–1247 e9. doi: 10.1016/j.cmet.2022.07.013
  • Jastreboff AM, Kaplan LM, Frias JP, et al. Triple-hormone-receptor agonist retatrutide for obesity - a phase 2 trial. N Engl J Med. 2023 Aug 10;389(6):514–526. doi: 10.1056/NEJMoa2301972
  • Choi JD, Baek S, Y KIM, et al. 982-P: a double-blinded, placebo controlled, single ascending dose study for safety, tolerability, pharmacokinetics, and pharmacodynamics after subcutaneous administration of novel long-acting GLP-1/GIP/Glucagon triple agonist (HM15211) in healthy obese subjects. Diabetes. 2019;68(Supplement_1).
  • Abdelmalek MF, Suzuki A, Sanchez W, et al. A phase 2, adaptive randomized, double-blind, placebo-controlled, multicenter, 52-week study of HM15211 in patients with biopsy-confirmed non-alcoholic steatohepatitis – study design and rationale of HM-TRIA-201 study. Contemp Clin Trials. 2023 Jul;130:107176. doi: 10.1016/j.cct.2023.107176
  • Bossart M, Wagner M, Elvert R, et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 2022 Jan 4;34(1):59–74 e10. doi: 10.1016/j.cmet.2021.12.005
  • Strande JL, Kurra V, Jeswani R, et al. A phase 1, randomized, double-blind, placebo-controlled single and multipleascending dose study of AMG 133 in subjects with obesity. Metab- Clin Exp. 2023 May 2023;142(Supplement). doi: 10.1016/j.metabol.2023.155433
  • Veniant MM, Lu SC, Atangan L, et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat Metab. 2024 Feb;6(2):290–303. doi: 10.1038/s42255-023-00966-w
  • Bayer M. 9 Meters calls it quits after measuring options, reports just $150K in cash. Fierce Biotech; 2023. Available from: https://www.fiercebiotech.com/biotech/9-meters-calls-it-quits-after-measuring-options-reports-just-150k-cash
  • 9 meters biopharma announces successful pre-IND meeting with FDA regarding its GIP antagonist NM-136 for obesity [Internet]. Raleigh (NC); 2023 Apr 5. Available from: https://www.biospace.com/article/releases/9-meters-biopharma-announces-successful-pre-ind-meeting-with-fda-regarding-its-gip-antagonist-nm-136-for-obesity/
  • GMA106: gmax biopharm. [cited 2024 Feb 25]. Available from: https://www.gmaxbiopharm.com/wap_product_detailen/id/6.html
  • Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of glucose-dependent insulinotropic polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Peptides. 2020 Mar;125:170208. doi: 10.1016/j.peptides.2019.170208
  • Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021 Mar 25;384(12):1113–1124. doi: 10.1056/NEJMoa2028395
  • Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021 Mar 18;384(11):989–1002. doi: 10.1056/NEJMoa2032183
  • Cai TT, Li HQ, Jiang LL, et al. Effects of GLP-1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52-week clinical study. Biomed Res Int. 2021;2021:1–8. doi: 10.1155/2021/3361309
  • Ussher JR, Campbell JE, Mulvihill EE, et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab. 2018 Feb 6;27(2):450–460 e6. doi: 10.1016/j.cmet.2017.11.003
  • Pujadas G, Baggio LL, Kaur KD, et al. Genetic disruption of the Gipr in Apoe(-/-) mice promotes atherosclerosis. Mol Metab. 2022 Nov;65:101586. doi: 10.1016/j.molmet.2022.101586

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.