17,296
Views
53
CrossRef citations to date
0
Altmetric
Special Section: Mitigation Pathways

Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C

ORCID Icon, , ORCID Icon, , , , ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 455-474 | Received 23 Mar 2020, Accepted 29 Sep 2020, Published online: 24 Oct 2020

References

  • Adom, F., Dunn, J. B., Han, J., & Sather, N. (2014). Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts. Environmental Science & Technology, 48(24), 14624–14631. https://doi.org/10.1021/es503766e
  • Allwood, J. M. (2013). Transitions to material efficiency in the UK steel economy. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 371, 20110577–20110577. https://doi.org/10.1098/rsta.2011.0577
  • Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling, 55(3), 362–381. https://doi.org/10.1016/j.resconrec.2010.11.002
  • Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science & Technology, 44(6), 1888–1894. https://doi.org/10.1021/es902909k
  • Allwood, J. M., Dunant, C. F., Lupton, R. C., Cleaver, C. J., Serrenho, A. C. H., Azevedo, J. M. C., Horton, P. M., Clare, C., Low, H., Horrocks, I., Murray, J., Lin, J., Cullen, J. M., Ward, M., Salamati, M., Felin, T., Ibell, T., Zho, W., & Hawkins, W. (2020). Absolute zero: Delivering the UK’s climate change commitment with incremental changes to today’s technologies. UK FIRES.
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182, 72–88. https://doi.org/10.1016/j.enconman.2018.12.080
  • Ball, M., & Wietschel, M. (2009). The future of hydrogen – opportunities and challenges. International Journal of Hydrogen Energy, 34(2), 615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  • Blok, K., Hoogzaad, J., Ramkumar, S., Ridley, A., Srivastav, P., Tan, I., Terlouw, W., & De Wit, M. (2016). Implementing circular economy globally makes Paris targets achievable. Ecofys; Circle Economy, 1–18. https://circulareconomy.europa.eu/platform/en/knowledge/implementing-circular-economy-globally-makes-paris-targets-achievable
  • Bows-Larkin, A. (2015). All adrift: Aviation, shipping, and climate change policy. Climate Policy, 15(6), 681–702. https://doi.org/10.1080/14693062.2014.965125
  • Bows-Larkin, A., Mander, S., Gilbert, P., Traut, M., Walsh, C., & Anderson, K. (2014). High seas, high stakes - high seas project final report. Tyndall Centre for Climate Change Research, 1–44. https://www.research.manchester.ac.uk/portal/en/publications/high-seas-high-stakes(70dd653a-6ef8-4e06-a18f-9a8ee28d7d3b).html
  • Bows-Larkin, A., Mander, S., Traut, M., Anderson, K., & Wood, F. R. (2016). Aviation and climate change–The continuing challenge. In R. Blockley & W. Shyy (Eds.), Encyclopedia of Aerospace Engineering. Wiley-Blackwell Publishing. https://doi.org/10.1002/9780470686652.eae1031
  • Bullock, S., Mason, J., Broderick, J., & Larkin, A. (2020). Shipping and the Paris climate agreement: A focus on committed emissions. BMC Energy.
  • CCC. (2009). Meeting the UK aviation target – options for reducing emissions to 2050. Committee on Climate Change.
  • CCC. (2020). Reducing UK emissions: 2020 progress report to Parliament. Committee on Climate Change.
  • Chavez, R., & Sharma, M. (2018). Profitability and environmental friendliness of a closed-loop supply chain for PET components: A case study of the Mexican automobile market. Resources, Conservation and Recycling, 135, 172–189. https://doi.org/10.1016/j.resconrec.2017.10.038
  • Cooper, S. J. G., Giesekam, J., Hammond, G. P., Norman, J. B., Owen, A., Rogers, J. G., & Scott, K. (2017). Thermodynamic insights and assessment of the 'circular economy'. Journal of Cleaner Production, 162, 1356–1367. https://doi.org/10.1016/j.jclepro.2017.06.169
  • Creutzig, F., Fernandez, B., Haberl, H., Khosla, R., Mulugetta, Y., & Seto, K. C. (2016). Beyond technology: Demand-side Solutions for Climate change mitigation. 41, 173–198. https://doi.org/10.1146/annurev-environ-110615-085428
  • Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y.-M., Clack, C. T. M., Cohen, A., Doig, S., Edmonds, J., Fennell, P., Field, C. B., Hannegan, B., Hodge, B.-M., Hoffert, M. I., … Caldeira, K. (2018). Net-zero emissions energy systems. Science, 360(6396), eaas9793. https://doi.org/10.1126/science.aas9793
  • De Souza, J. F. T., De Oliveira, B. P., Ferrer, J. T. V., & Pacca, S. A. (2018). Industrial low carbon futures: A regional marginal abatement cost curve for Sao Paulo, Brazil. Journal of Cleaner Production, 200, 680–686. https://doi.org/10.1016/j.jclepro.2018.07.206
  • Drews, M., Larsen, M. A. D., & Peña Balderrama, J. G. (2020). Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strategy Reviews, 29, 100487. https://doi.org/10.1016/j.esr.2020.100487
  • Edelenbosch, O. Y., Kermeli, K., Crijns-Graus, W., Worrell, E., Bibas, R., Fais, B., Fujimori, S., Kyle, P., Sano, F., & Van Vuuren, D. P. (2017a). Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy, 122, 701–710. https://doi.org/10.1016/j.energy.2017.01.017
  • Edelenbosch, O. Y., Mccollum, D. L., Van Vuuren, D. P., Bertram, C., Carrara, S., Daly, H., Fujimori, S., Kitous, A., Kyle, P., Ó Broin, E., Karkatsoulis, P., & Sano, F. (2017b). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, 55, 281–293. https://doi.org/10.1016/j.trd.2016.07.003
  • Edelenbosch, O. Y., Van Vuuren, D. P., Bertram, C., Carrara, S., Emmerling, J., Daly, H., Kitous, A., Mccollum, D. L., & Saadi Failali, N. (2017c). Transport fuel demand responses to fuel price and income projections: Comparison of integrated assessment models. Transportation Research Part D: Transport and Environment, 55, 310–321. https://doi.org/10.1016/j.trd.2017.03.005
  • Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., Criqui, P., Isaac, M., Kitous, A., Kypreos, S., Leimbach, M., Lessmann, K., Magné, B., Scrieciu, S., Turton, H., & Vuuren, D. V. (2010). The Economics of Low Stabilization: Model comparison of mitigation strategies and costs. The Energy Journal, 31, 11–48. www.jstor.org/stable/41323490
  • Eerhart, A. J. J. E., Faaij, A. P. C., & Patel, M. K. (2012). Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 5(4), 6407–6422. https://doi.org/10.1039/c2ee02480b
  • EIA. (2016). International energy Outlook 2016. U.S. Energy Information Administration.
  • Eide, M. S., Longva, T., Hoffmann, P., Endresen, Ø, & Dalsøren, S. B. (2011). Future cost scenarios for reduction of ship CO2 emissions. Maritime Policy & Management, 38(1), 11–37. https://doi.org/10.1080/03088839.2010.533711
  • Ellen Macarthur Foundation. (2014). Towards the circular economy Vol. 3: Accelerating the scale-up across global supply chains. The Ellen MacArthur Foundation.
  • Energy, U. K. (2020). Rebuilding the UK economy: Fairer, cleaner, more resilient. How the energy transition can drive the economic recovery. Energy UK; PwC Strategy&.
  • EPRI. (2018). The U.S. National electrification assessment (USNEA). The Electric Power Research Institute (EPRI).
  • Flade, S., Stephan, T., Thalau, O., Burberg, T., Schirmer, J., & Kallo, J. (2016). Air breathing PEM fuel cells in aviation. ECS Transactions, 75(14), 471–477. https://doi.org/10.1149/07514.0471ecst
  • Forster, P., Huppmann, D., Kriegler, E., Mundaca, L., Smith, C., Rogelj, J., & Séférian, R. (2018). Mitigation pathways compatible with 1.5°C in the context of sustainable development supplementary material. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization.
  • Freightliner. (2015). SuperTruck. The future. Five years in the making: Meet the most freight-efficient concept truck on the planet [Online]. Available: https://freightliner.com/why-freightliner/industry-leading-results/supertruck/ [Accessed 13th March 2019]
  • Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., Mccollum, D. L., Obersteiner, M., Pachauri, S., … Riahi, K. (2017). The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 42, 251–267. https://doi.org/10.1016/j.gloenvcha.2016.06.004
  • Fulton, L. M., Lynd, L. R., Körner, A., Greene, N., & Tonachel, L. R. (2015). The need for biofuels as part of a low carbon energy future. Biofuels, Bioproducts and Biorefining, 9(5), 476–483. https://doi.org/10.1002/bbb.1559
  • Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853. https://doi.org/10.1038/nclimate2392
  • Gaede, J., & Meadowcroft, J. (2016). Carbon capture and storage demonstration and low-carbon energy transitions: Explaining limited progress. In V. D. Graaf, T. Sovacool, B. K. Ghosh, A. Kern, F. & Klare, & M. T (Eds.), The palgrave handbook of the international political economy of energy (pp. 319–340). Palgrave Macmillan UK.
  • Gallego-Schmid, A., Chen, H.-M., Sharmina, M., & Mendoza, J. M. F. (2020). Links between circular economy and climate change mitigation in the built environment. Journal of Cleaner Production, 260, 121115. https://doi.org/10.1016/j.jclepro.2020.121115
  • Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., & Murphy, A. (2018). Assessment of full life-cycle air emissions of alternative shipping fuels. Journal of Cleaner Production, 172, 855–866. https://doi.org/10.1016/j.jclepro.2017.10.165
  • Girod, B., Van Vuuren, D. P., & Deetman, S. (2012). Global travel within the 2°C climate target. Energy Policy, 45, 152–166. https://doi.org/10.1016/j.enpol.2012.02.008
  • Graham, W., Hall, C., & Morales, M. V. (2014). The potential of future aircraft technology for noise and pollutant emissions reduction. Transport Policy, 34, 36–51. https://doi.org/10.1016/j.tranpol.2014.02.017
  • Greening, P., Piecyk, M., Palmer, A., & Dadhich, P. (2019). Decarbonising road freight. Future of mobility: Evidence review. Foresight, Government Office for Science.
  • Griffin, P. W., Hammond, G. P., & Norman, J. B. (2016). Industrial energy use and carbon emissions reduction: A UK perspective. Wiley Interdisciplinary Reviews: Energy and Environment, 5(6), 684–714. https://doi.org/10.1002/wene.212
  • Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., Mccollum, D. L., Rao, N. D., Riahi, K., Rogelj, J., De Stercke, S., Cullen, J., Frank, S., Fricko, O., Guo, F., Gidden, M., Havlík, P., Huppmann, D., Kiesewetter, G., Rafaj, P., … Valin, H. (2018). A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6), 515–527. https://doi.org/10.1038/s41560-018-0172-6
  • Hammond, G. (2013). Carbon dioxide capture and storage faces a challenging future. Proceedings of the Institution of Civil Engineers - Civil Engineering, 166(4), 147–147. https://doi.org/10.1680/cien.2013.166.4.147
  • Hammond, G., & O'Grady, Á. (2014). The implications of upstream emissions from the power sector. Proceedings of the Institution of Civil Engineers - Energy, 167(1), 9–19. https://doi.org/10.1680/ener.13.00006
  • Heitmann, N., & Peterson, S. (2014). The potential contribution of the shipping sector to an efficient reduction of global carbon dioxide emissions. Environmental Science & Policy, 42, 56–66. https://doi.org/10.1016/j.envsci.2014.05.001
  • Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., Asghari, F. N., Olivetti, E., Pauliuk, S., Tu, Q., & Wolfram, P. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14(4), 043004. https://doi.org/10.1088/1748-9326/ab0fe3
  • Hileman, J. I., & Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62. https://doi.org/10.1016/j.tranpol.2014.02.018
  • Hu, B., Zhang, Y., Li, Y., Teng, Y., & Yue, W. (2020). Can bioenergy carbon capture and storage aggravate global water crisis? Science of The Total Environment, 714, 136856. https://doi.org/10.1016/j.scitotenv.2020.136856
  • Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570. https://doi.org/10.1016/j.jclepro.2015.04.109
  • Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Katherine Calvin, F. H., Popp, A., Rose, S. K., Weyant, J., Bauer, N., Bertram, C., Bosetti, V., Doelman, J., Drouet, L., Emmerling, J., Frank, S., Fujimori, S., Gernaat, D., Grubler, A., … Zhang, A. R. (2019). IAMC 1.5°C Scenario explorer and data hosted by IIASA. Vienna, Austria: Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis.
  • ICAO. (2016). Environmental Report 2016 - Aviation and climate change.
  • ICAO. (2020). Effects of novel Coronavirus (COVID-19) on civil aviation: Economic impact analysis. ICAO, Air Transport Bureau.
  • IEA. (2017). The future of trucks: Implications for energy and the environment (2nd ed.). International Energy Agency.
  • IEA. (2020). Sustainable recovery. World energy outlook special report. International Energy Agency (IEA).
  • IPCC. (2014a). Climate change 2014: Mitigation of climate change. In O. Edenhofer, R. P. Madruga, & Y. Sokona (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg3/
  • IPCC. (2014b). The IAMC AR5 Online Scenario Database. The International Institute for Applies Systems Analysis (IIASA). Available at: https://secure.iiasa.ac.at/web-apps/ene/AR5DB/
  • IPCC. (2018). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
  • Ji, L., Zhang, B., Huang, G., Cai, Y., & Yin, J. (2020). Robust regional low-carbon electricity system planning with energy-water nexus under uncertainties and complex policy guidelines. Journal of Cleaner Production, 252, 119800. https://doi.org/10.1016/j.jclepro.2019.119800
  • Jiang, H.-D., Dong, K.-Y., Zhang, K., & Liang, Q.-M. (2020). The hotspots, reference routes, and research trends of marginal abatement costs: A systematic review. Journal of Cleaner Production, 252, 119809. https://doi.org/10.1016/j.jclepro.2019.119809
  • Jin, Y., Behrens, P., Tukker, A., & Scherer, L. (2019). Water use of electricity technologies: A global meta-analysis. Renewable and Sustainable Energy Reviews, 115, 109391. https://doi.org/10.1016/j.rser.2019.109391
  • Johnson, J. (2020). Clipped wings. Energy world. Energy Institute.
  • Kampman, B., Verbeek, R., Van Grinsven, A., Van Mensch, P., Croezen, H., & Patuleia, A. (2013). Bringing biofuels on the market: Options to increase EU biofuels volumes beyond the current blending limits. CE Delft. Commissioned by the European Commission, DG Energy.
  • Kaya, Y. (1989). Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios. Intergovernmental Panel on Climate Change/Response Strategies Working Group, May.
  • Keller, V., Lyseng, B., Wade, C., Scholtysik, S., Fowler, M., Donald, J., Palmer-Wilson, K., Robertson, B., Wild, P., & Rowe, A. (2019). Electricity system and emission impact of direct and indirect electrification of heavy-duty transportation. Energy, 172, 740–751. https://doi.org/10.1016/j.energy.2019.01.160
  • Kesicki, F. (2012). Intertemporal issues and marginal abatement costs in the UK transport sector. Transportation Research Part D: Transport and Environment, 17(5), 418–426. https://doi.org/10.1016/j.trd.2012.04.002
  • Larkin, A., Kuriakose, J., Sharmina, M., & Anderson, K. (2017). What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Climate Policy, 18(6), 690–714. https://doi.org/10.1080/14693062.2017.134649
  • Larsson, J., Elofsson, A., Sterner, T., & Åkerman, J. (2019). International and national climate policies for aviation: A review. Climate Policy, 19(6), 1–13. https://doi.org/10.1080/14693062.2018.1562871
  • Lee, D. S. (2017). Update of maritime greenhouse gas emissions projections - Full report. MEPC 71/INF.34. CE Delft.
  • Leeson, D., Mac Dowell, N., Shah, N., Petit, C., & Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 61, 71–84. https://doi.org/10.1016/j.ijggc.2017.03.020
  • Lilliestam, J., Bielicki, J. M., & Patt, A. G. (2012). Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): potentials, costs, risks, and barriers. Energy Policy, 47, 447–455. https://doi.org/10.1016/j.enpol.2012.05.020
  • Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2011). Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy, 39(6), 3456–3464. https://doi.org/10.1016/j.enpol.2011.03.044
  • Lovins, A. B., Ürge-Vorsatz, D., Mundaca, L., Kammen, D. M., & Glassman, J. W. (2019). Recalibrating climate prospects. Environmental Research Letters, 14(12), 120201. https://doi.org/10.1088/1748-9326/ab55ab
  • Low, S., & Schäfer, S. (2020). Is bio-energy carbon capture and storage (BECCS) feasible? The contested authority of integrated assessment modeling. Energy Research & Social Science, 60, 101326. https://doi.org/10.1016/j.erss.2019.101326
  • Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., Fujimori, S., Havlík, P., Iyer, G., Keramidas, K., Kitous, A., Pehl, M., Krey, V., Riahi, K., Saveyn, B., … Kriegler, E. (2018). Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 8(7), 626–633. https://doi.org/10.1038/s41558-018-0198-6
  • Luh, S., Budinis, S., Giarola, S., Schmidt, T. J., & Hawkes, A. (2020). Long-term development of the industrial sector – case study about electrification, fuel switching, and CCS in the USA. Computers & Chemical Engineering, 133, 106602. https://doi.org/10.1016/j.compchemeng.2019.106602
  • Mai, T., Jadun, P., Logan, J., Mcmillan, C., Muratori, M., Steinberg, D., Vimmerstedt, L., Jones, R., Haley, B., & Nelson, B. (2018). Electrification futures study: Scenarios of electric technology adoption and power consumption for the United States. National Renewable Energy Laboratory.
  • Mander, S. (2017). Slow steaming and a new Dawn for wind propulsion: A multi-level analysis of two low carbon shipping transitions. Marine Policy, 75, 210–216. https://doi.org/10.1016/j.marpol.2016.03.018
  • Markham, F., Young, M., Reis, A., & Higham, J. (2018). Does carbon pricing reduce air travel? Evidence from the Australian ‘clean energy future’ policy, July 2012 to June 2014. Journal of Transport Geography, 70, 206–214. https://doi.org/10.1016/j.jtrangeo.2018.06.008
  • Mccarthy, A., Dellink, R., & Bibas, R. (2018). The macroeconomics of the circular economy transition: A critical review of modelling approaches. OECD Environment Working Papers. Paris: OECD Publishing.
  • Mckinsey. (2017). What’s sparking electric-vehicle adoption in the truck industry?
  • Milford, R. L., Pauliuk, S., Allwood, J. M., & Müller, D. B. (2013). The roles of energy and material efficiency in meeting steel industry CO2 targets. Environmental Science and Technology, 47(7), 3455–3462. https://doi.org/10.1021/es3031424
  • Montreuil, B. (2011). Toward a physical Internet: Meeting the global logistics sustainability grand challenge. Logistics Research, 3(2–3), 71–87. https://doi.org/10.1007/s12159-011-0045-x
  • Mulholland, E., Teter, J., Cazzola, P., Mcdonald, Z., & Ó Gallachóir, B. P. (2018). The long haul towards decarbonising road freight – A global assessment to 2050. Applied Energy, 216, 678–693. https://doi.org/10.1016/j.apenergy.2018.01.058
  • Muratori, M., Smith, S. J., Kyle, P., Link, R., Mignone, B. K., & Kheshgi, H. S. (2017). Role of the freight sector in future Climate change mitigation scenarios. Environmental Science & Technology, 51(6), 3526–3533. https://doi.org/10.1021/acs.est.6b04515
  • Murphy, A., Earl, T., Hemmings, B., Calvo Ambel, C., Buffet, L., Gilliam, L., & Sihvonen, J. (2018). . Roadmap to decarbonising European aviation. European Federation for Transport and Environment AISBL.
  • NATS. (2018). NATS Responsible Business Report 2017–18. National Air Traffic Services (NATS).
  • Nelissen, D., Traut, M., Köhler, J., Mao, W., Faber, J., & Ahdour, S. (2016). Study on the analysis of market potentials and market barriers for wind propulsion technologies for ships. CE Delft. https://www.cedelft.eu/publicatie/study_on_the_analysis_of_market_potentials_and_market_barriers_for_wind_propulsion_technologies_for_ships/1891
  • OECD/ITF. (2010). Reducing transport GHG emissions: Opportunities and costs. Preliminary findings. International Transport Forum; OECD Publishing.
  • OECD/ITF. (2017). ITF transport outlook 2017. International Transport Forum; OECD Publishing.
  • Parsa, M., Nookabadi, A. S., Flapper, S. D., & Atan, Z. (2019). Green hub-and-spoke network design for aviation industry. Journal of Cleaner Production, 229, 1377–1396. https://doi.org/10.1016/j.jclepro.2019.04.188
  • Pauliuk, S., & Müller, D. B. (2014). The role of in-use stocks in the social metabolism and in climate change mitigation. Global Environmental Change, 24, 132–142. https://doi.org/10.1016/j.gloenvcha.2013.11.006
  • Peters, G. P., Andrew, R. M., Canadell, J. G., Fuss, S., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., & & Nakicenovic, N. (2017). Key indicators to track current progress and future ambition of the Paris Agreement. Nature Climate Change, 7(2), 118–122. https://doi.org/10.1038/nclimate3202
  • Phadke, A. A., Khandekar, A., Mccall, M., Karali, N., & Rajagopal, D. (2019). Long-haul battery electric trucks are technically feasible and economically compelling.
  • Rheaume, J. M., & Lents, C. Energy Storage for Commercial Hybrid Electric Aircraft. SAE Technical Paper, 09 2016. SAE International.
  • Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S. A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E. D., De La Rue Du Can, S., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266, 114848. https://doi.org/10.1016/j.apenergy.2020.114848
  • Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., & Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609), 631–639. https://doi.org/10.1038/nature18307
  • Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., … Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Climate Change, 8(4), 325–332. https://doi.org/10.1038/s41558-018-0091-3
  • Schäfer, A. W., Evans, A. D., Reynolds, T. G., & Dray, L. (2016). Costs of mitigating CO2 emissions from passenger aircraft. Nature Climate Change, 6(4), 412–417. https://doi.org/10.1038/nclimate2865
  • Schafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research Part A: Policy and Practice, 34(3), 171–205. https://doi.org/10.1016/S0965-8564(98)00071-8
  • Schäfer, A. W., & Yeh, S. (2020). A holistic analysis of passenger travel energy and greenhouse gas intensities. Nature Sustainability, 3(6), 459–462. https://doi.org/10.1038/s41893-020-0514-9
  • Schroten, A., Warringa, G., & Bles, M. (2012). Marginal abatement cost curves for heavy duty vehicles. Background report. CE Delft.
  • Schwanitz, V. J. (2013). Evaluating integrated assessment models of global climate change. Environmental Modelling & Software, 50, 120–131. https://doi.org/10.1016/j.envsoft.2013.09.005
  • Scott, K., Giesekam, J., Barrett, J., & Owen, A. (2018). Bridging the climate mitigation gap with economy-wide material productivity. Journal of Industrial Ecology, 23(4), 918–931. https://doi.org/10.1111/jiec.12831
  • Searle, S., & Malins, C. (2015). A reassessment of global bioenergy potential in 2050. Gcb Bioenergy, 7(2), 328–336. https://doi.org/10.1111/gcbb.12141
  • Sharifzadeh, M., Hien, R. K. T., & Shah, N. (2019). China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage. Applied Energy, 235, 31–42. https://doi.org/10.1016/j.apenergy.2018.10.087
  • Sharmina, M., Mcglade, C., Gilbert, P., & Larkin, A. (2017). Global energy scenarios and their implications for future shipped trade. Marine Policy, 84, 12–21. https://doi.org/10.1016/j.marpol.2017.06.025
  • Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O’KEEFFE, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., Hoen, M., … Pandey, A. (2015). Third IMO GHG study 2014. International Maritime Organization.
  • Sustainable Aviation. (2020). Decarbonisation road-Map: A path to net zero.
  • Szodruch, J., Grimme, W., Blumrich, F., & Schmid, R. (2011). Next generation single-aisle aircraft--requirements and technological solutions. Journal of Air Transport Management, 17(1), 33–39. https://doi.org/10.1016/j.jairtraman.2010.10.007
  • Tavoni, M., Kriegler, E., Riahi, K., Van Vuuren, D. P., Aboumahboub, T., Bowen, A., Calvin, K., Campiglio, E., Kober, T., Jewell, J., Luderer, G., Marangoni, G., Mccollum, D., Van Sluisveld, M., Zimmer, A., & Van Der Zwaan, B. (2015). Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5(2), 119–126. https://doi.org/10.1038/nclimate2475
  • Tiwari, A., Padhee, U., & Dora, M. (2020). COVID19: The impact on aviation and what we can do about it. Retrieved June 11, 2020, from https://www.brunel.ac.uk/news-and-events/news/articles/COVID19-The-impact-on-aviation-and-what-we-can-do-about-it
  • Traut, M., Gilbert, P., Walsh, C., Bows, A., Filippone, A., Stansby, P., & Wood, R. (2014). Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes. Applied Energy, 113, 362–372. https://doi.org/10.1016/j.apenergy.2013.07.026
  • Traut, M., Larkin, A., Anderson, K., Mcglade, C., Sharmina, M., & Smith, T. (2018). CO2 abatement goals for international shipping. Climate Policy, 18(8), 1066–1075. https://doi.org/10.1080/14693062.2018.1461059
  • Trutnevyte, E., Hirt, L. F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O. Y., Pedde, S., & Van Vuuren, D. P. (2019). Societal Transformations in models for energy and Climate policy: The Ambitious next Step. One Earth, 1(4), 423–433. https://doi.org/10.1016/j.oneear.2019.12.002
  • UN. (2020). COVID-19 and Human Rights: We are all in this together. UN policy brief, April 2020. Retrieved September 25, 2020, from https://www.un.org/en/un-coronavirus-communications-team/un-urges-countries-%E2%80%98build-back-better%E2%80%99
  • UNCTAD. (2015). Review of maritine transport 2015. United Nations Conference on Trade and Development (UNCTAD).
  • Van Den Berg, N. J., Hof, A. F., Akenji, L., Edelenbosch, O. Y., Van Sluisveld, M. A. E., Timmer, V. J., & Van Vuuren, D. P. (2019). Improved modelling of lifestyle changes in integrated assessment models: Cross-disciplinary insights from methodologies and theories. Energy Strategy Reviews, 26, 100420. https://doi.org/10.1016/j.esr.2019.100420
  • Van Ruijven, B. J., Van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., & Patel, M. K. (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, 15–36. https://doi.org/10.1016/j.resconrec.2016.04.016
  • Van Sluisveld, M. A. E., Martínez, S. H., Daioglou, V., & Van Vuuren, D. P. (2016). Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 102, 309–319. https://doi.org/10.1016/j.techfore.2015.08.013
  • Van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., Van Den Berg, M., Harmsen, M., De Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., Van Meijl, H., Müller, C., Van Ruijven, B. J., Van Der Sluis, S., & Tabeau, A. (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, 237–250. https://doi.org/10.1016/j.gloenvcha.2016.05.008
  • Vaughan, N. E., Gough, C., Mander, S., Littleton, E. W., Welfle, A., Gernaat, D. E. H. J., & Van Vuuren, D. P. (2018). Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 13(4), 044014. https://doi.org/10.1088/1748-9326/aaaa02
  • Vercoulen, P., Lee, S., Mercure, J.-F., Suk, S., He, Y., & Fujikawa, K. (2018). Decarbonizing the East Asian steel industry in 2050: An analysis performed with FTT(future technology transformation)-steel model. Meijo University.
  • Vine, D., & Ye, J. (2018). Decarbonizing U.S. Industry. Center for Climate and Energy Solutions (C2ES).
  • Vogl, V., Åhman, M., & Nilsson, L. J. (2020). The making of green steel in the EU: A policy evaluation for the early commercialization phase. Climate Policy. https://doi.org/10.1080/14693062.2020.1803040
  • Walsh, C., Lazarou, N.-J., Traut, M., Price, J., Raucci, C., Sharmina, M., Agnolucci, P., Mander, S., Gilbert, P., Anderson, K., Larkin, A., & Smith, T. (2019). Trade and trade-offs: Shipping in changing climates. Marine Policy, 106, 103537. https://doi.org/10.1016/j.marpol.2019.103537
  • Willis Re. (2020). Covid-19. What will be the impact to the aviation sector from the Corona virus outbreak? Willis Towers Watson.
  • Wise, M., Muratori, M., & Kyle, P. (2017). Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis. Transportation Research Part D: Transport and Environment, 52, 244–253. https://doi.org/10.1016/j.trd.2017.03.006
  • Workman, M., Dooley, K., Lomax, G., Maltby, J., & Darch, G. (2020). Decision making in contexts of deep uncertainty - An alternative approach for long-term climate policy. Environmental Science & Policy, 103, 77–84. https://doi.org/10.1016/j.envsci.2019.10.002
  • Yamagata, Y. (2019). Global negative emission land Use scenarios and their Ecological implications. In B. Fath (Ed.), Encyclopedia of Ecology (Second Edition) (pp. 96–107). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10893-0
  • Yang, X., Teng, F., & Wang, G. (2013). Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China. Applied Energy, 112, 1446–1453. https://doi.org/10.1016/j.apenergy.2013.03.040
  • Yuan, J., Ng, S. H., & Sou, W. S. (2016). Uncertainty quantification of CO2 emission reduction for maritime shipping. Energy Policy, 88, 113–130. https://doi.org/10.1016/j.enpol.2015.10.020