409
Views
11
CrossRef citations to date
0
Altmetric
Review

Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung

, , &
Pages 241-250 | Received 14 Jul 2018, Accepted 13 Dec 2018, Published online: 27 Dec 2018

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018 Jan–Feb;68(1):7–30. PubMed PMID: 29313949; eng.
  • Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018 Jan;553(7689):446–454. PubMed PMID: 29364287; eng.
  • Shi Y, Au JS-K, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014 Feb;9(2):154–162. PubMed PMID: 26599344; eng.
  • Nukaga S, Yasuda H, Tsuchihara K, et al. Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res. 2017 Apr;77(8):2078–2089. PubMed PMID: 28202511; eng.
  • Lin JJ, Zhu VW, Yoda S, et al. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J Clin Oncol. 2018 Apr;36(12):1199-1206. PubMed PMID: 29373100; eng.
  • Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor-2 (Nrf2), a NF-E2-like basic leucine-zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-blobin locus-control region. Proc Natl Acad Sci USA. 1994 Oct;91(21):9926–9930. PubMed PMID: 7937919; eng.
  • Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016 Jul;22(7):578–593. PubMed PMID: 27263465; eng
  • Krajka-Kuzniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep. 2017 Jun;69(3):393–402. PubMed PMID: 28267640; eng
  • Pandey P, Singh AK, Singh M, et al. The see-saw of Keapl-Nrf2 pathway in cancer. Crit Rev Oncol Hemat. 2017 Aug;116:89–98. PubMed PMID: 28693803; eng.
  • Hu YR, Ma H, Zou ZY, et al. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Biomed Pharmacother. 2017 Jan;85:313–322. PubMed PMID: 27903425; eng.
  • Ahmed SM, Luo L, Namani A, et al. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta. 2017 Feb;1863(2):585–597. PubMed PMID: 27825853; eng.
  • Nioi P, Nguyen T, Sherratt PJ, et al. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol. 2005 Dec;25(24):10895–10906. PubMed PMID: 16314513; eng.
  • Jiang S, Yang Y, Li T, et al. An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opin Ther Tar. 2016 Dec;20(12):1413–1424. PubMed PMID: 27756179; eng.
  • Zhang J, Hosoya T, Maruyama A, et al. Nrf2 Neh5 domain is differentially utilized in the transactivation of cytoprotective genes. Biochem J. 2007 Jun;404:459–466. PubMed PMID: 17313370; eng.
  • Chowdhry S, Zhang Y, McMahon M, et al. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 2013 Aug;32(32):3765–3781. PubMed PMID: 22964642; eng.
  • Eggler AL, Liu GW, Pezzuto JM, et al. Modifying specific cysteines of the electrophile-sensing human Keap1 disrupt binding to the protein is insufficient to Nrf2 domain Neh2. Proc Natl Acad Sci USA. 2005 Jul;102(29):10070–10075. PubMed PMID: 16006525; eng.
  • Cheng J, Guo J, Wang Z, et al. Functional analysis of Cullin 3 E3 ligases in tumorigenesis. BBA-Rev Cancer. 2018 Jan;1869(1):11–28. PubMed PMID: 29128526; eng.
  • Saito R, Suzuki T, Hiramoto K, et al. Characterizations of three major cysteine sensors of keap1 in stress response. Mol Cell Biol. 2016 Jan;36(2):271–284. PubMed PMID: 26527616; eng.
  • Tong KI, Katoh Y, Kusunoki H, et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006 Apr;26(8):2887–2900. PubMed PMID: 16581765; eng.
  • Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys. 2017 Mar;617:84–93. PubMed PMID: 27497696; eng.
  • Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012 Sep;150(6):1107–1120. PubMed PMID: 22980975; eng.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 Apr;348(6230):124–128. PubMed PMID: 25765070; eng.
  • Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul;511(7511):543–550. PubMed PMID: 25079552; eng.
  • Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008 Oct;455(7216):1069–1075. PubMed PMID: 18948947; eng.
  • Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017 Jun;7(6):596–609. PubMed PMID: 28336552; eng.
  • Goldstein LD, Lee J, Gnad F, et al. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 2016 Sep;16(10):2605–2617. PubMed PMID: 27568559; eng.
  • Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011 Feb;16(2):123–140. PubMed PMID: 21251164; eng.
  • Kadara H, Choi M, Zhang J, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol. 2018 Apr ;29(4):1072. PubMed PMID: 29688333; eng.
  • Fahrmann JF, Grapov DD, Wanichthanarak K, et al. Integrated metabolomics and proteomics highlight altered nicotinamide- and polyamine pathways in lung adenocarcinoma. Carcinogenesis. 2017 Mar;38(3): 271-280. PubMed PMID: 28049629; eng.
  • Arbour KC, Jordan E, Kim HR, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 2018 Jan;24(2):334–340. PubMed PMID: 29089357; eng.
  • Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis. Nat Med. 2017 Oct;23(11):1362–1368. PubMed PMID: 28967920; eng.
  • Best SA, De Souza DP, Kersbergen A, et al. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 2018;27(4):935–943.e4. PubMed PMID: 29526543; eng.
  • Jeong Y, Hoang NT, Lovejoy A, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017 Jan;7(1):86–101. PubMed PMID: 27663899; eng.
  • Singh A, Misra V, Thimmulappa RK, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006 Oct;3(10):e420. PubMed PMID: 17020408; eng.
  • Shi J, Hua X, Zhu B, et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med. 2016 Dec;13(12):e1002162. PubMed PMID: 27923066; eng.
  • Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015 Jul;16(7):e342–51. . PubMed PMID: 26149886; eng.
  • Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018 Jan;9(2):117. PubMed PMID: 29371589; eng.
  • Namani A, Matiur Rahaman M, Chen M, et al. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer. 2018 Jan;18(1):46. PubMed PMID: 29306329; eng.
  • Sakurai T, Isogaya K, Sakai S, et al. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene. 2016 Sep;35(38):5000–5009. PubMed PMID: 26923328; eng.
  • Hartikainen JM, Tengstrom M, Winqvist R, et al. KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin Cancer Res. 2015 Apr;21(7):1591–1601. PubMed PMID: 25589623; eng.
  • Muscarella LA, Fazio VM. Keap1/Nrf2 impairing revised: are we missing the single nucleotide polymorphisms?. J Thorac Dis. 2016 Dec;8(12):E1752–E1754. PubMed PMID: 28149633; eng.
  • Bergstrom P, von Otter M, Nilsson S, et al. Association of NFE2L2 and KEAP1 haplotypes with amyotrophic lateral sclerosis. Amyotroph Lat Scler Front Degen. 2014 Mar;15(1–2):130–137. PubMed PMID: 24102512; eng.
  • Liu Z, Yin X, Liu L, et al. Association of KEAP1 and NFE2L2 polymorphisms with temporal lobe epilepsy and drug resistant epilepsy. Gene. 2015 Oct;571(2):231–236. PubMed PMID: 26149655; eng.
  • Wong TF, Yoshinaga K, Monma Y, et al. Association of keap1 and nrf2 genetic mutations and polymorphisms with endometrioid endometrial adenocarcinoma survival. Int J Gynecol Cancer. 2011 Nov;21(8):1428–1435. PubMed PMID: 21897267; eng.
  • Barbano R, Muscarella LA, Pasculli B, et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics. 2013 Jan;8(1):105–112. PubMed PMID: 23249627; eng.
  • Martinez VD, Vucic EA, Thu KL, et al. Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: association with poor prognosis in head and neck cancer. Head Neck. 2015 May;37(5):727–734. PubMed PMID: 24596130; eng.
  • Muscarella LA, Parrella P, D’Alessandro V, et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics. 2011 Jun;6(6):710–719. PubMed PMID: 21610322; eng.
  • Liu X, Sun C, Liu B, et al. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget. 2016 May;7(19):27267–27279. PubMed PMID: 27029077; eng.
  • Wang R, An J, Ji F, et al. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun. 2008 Aug;373(1):151–154. PubMed PMID: 18555005; eng.
  • Guo D, Wu B, Yan J, et al. A possible gene silencing mechanism: hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells. Biochem Biophys Res Commun. 2012 Nov;428(1):80–85. PubMed PMID: 23047008; eng.
  • Wang D, Ma Y, Yang X, et al. Hypermethylation of the Keap1 gene inactivates its function, promotes Nrf2 nuclear accumulation, and is involved in arsenite-induced human keratinocyte transformation. Free Radical Biol Med. 2015 Dec;89:209–219. PubMed PMID: 26409248; eng.
  • Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014 Oct;55(11):7256–7265. PubMed PMID: 25301875; eng.
  • Chen PH, Chi JT, Boyce M. KEAP1 has a sweet spot: A new connection between intracellular glycosylation and redox stress signaling in cancer cells. Mol Cell Oncol. 2017;46:e1361501.  PubMed PMID: 29209650; eng.
  • Mei Z, He Y, Feng J, et al. MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett. 2014 Aug;588(17):3055–3061. PubMed PMID: 24945731; eng.
  • Fu WF, Chen WB, Dai L, et al. Inhibition of miR-141 reverses cisplatin resistance in non-small cell lung cancer cells via upregulation of programmed cell death protein 4. Eur Rev Med Pharmacol. 2016 Jun;20(12):2565–2572. PubMed PMID: 27383306; eng.
  • Wang LL, Huang YH, Yan CY, et al. N-acetylcysteine Ameliorates Prostatitis via miR-141 Regulating Keap1/Nrf2 Signaling. Inflammation. 2016 Apr;39(2):938–947. PubMed PMID: 26941030; eng.
  • Shi L, Wu L, Chen Z, et al. MiR-141 Activates Nrf2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cell Physiol Biochem. 2015 Apr;35(6):2333–2348. PubMed PMID: 25896253; eng.
  • Tang CZ, Li KR, Yu Q, et al. Activation of Nrf2 by ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Free Radical Biol Med. 2018 Mar;117:238–246. PubMed PMID: 29427790; eng.
  • Eades G, Yang M, Yao Y, et al. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011 Nov;286(47):40725–40733. PubMed PMID: 21926171; eng.
  • Kabaria S, Choi DC, Chaudhuri AD, et al. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med. 2015 Dec;89:548–556. PubMed PMID: 26453926; eng.
  • Zhou L, Xu DY, Sha WG, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. 2015 Nov;13:352. PubMed PMID: 26552447; eng.
  • Cortez MA, Valdecanas D, Zhang X, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014 Aug;22(8):1494–1503. PubMed PMID: 24791940; eng.
  • Kim JH, Lee KS, Lee DK, et al. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antioxid Redox Sign. 2014 Dec;21(18):2469–2482. PubMed PMID: 24844779; eng.
  • Liao W, Fu Z, Zou Y, et al. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism. Exper Cell Res. 2017 Nov;360(2):292–302. PubMed PMID: 28928081; eng.
  • Yang M, Yao Y, Eades G, et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat. 2011 Oct;129(3):983–991. PubMed PMID: 21638050; eng.
  • Zhou S, Ye W, Zhang Y, et al. miR-144 reverses chemoresistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Am J Transl Res. 2016 Jul;8(7):2992–3002. PubMed PMID: 27508019; eng.
  • Singh B, Ronghe AM, Chatterjee A, et al. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis. 2013 May;34(5):1165–1172. PubMed PMID: 23492819; eng.
  • Trivedi M, Singh A, Talekar M, et al. MicroRNA-34a encapsulated in hyaluronic acid nanoparticles induces epigenetic changes with altered mitochondrial bioenergetics and apoptosis in non-small-cell lung cancer cells. Sci Rep. 2017 Jun;7(1):3636. PubMed PMID: 28623259; eng.
  • Wang B, Teng Y, Liu Q. MicroRNA-153 Regulates NRF2 expression and is associated with breast carcinogenesis. Clin Lab. 2016;62(1–2): 39–47. PubMed PMID: 27012032; eng.
  • Yamamoto S, Inoue J, Kawano T, et al. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res. 2014 Jan;12(1):58–68. PubMed PMID: 24307696; eng.
  • Zhang B, Xu J, Li C, et al. MBD1 is an epigenetic regulator of KEAP1 in pancreatic cancer. Curr Mol Med. 2016;16(4):404–411. PubMed PMID: 26980696; eng.
  • Huang Y, Li WJ, Su ZY, et al. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015 Dec;26(12):1401–1413. PubMed PMID: 26419687; eng.
  • Fabrizio FP, Sparaneo A, Trombetta D, et al. Epigenetic versus genetic deregulation of the KEAP1/NRF2 axis in solid tumors: focus on methylation and noncoding RNAs. Oxid Med Cell Longev. 2018 Mar;2018:2492063. PubMed PMID: 29643973; eng.
  • Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: role of Nrf2. Free Radical Biol Med. 2017 Feb;103:155–164. PubMed PMID: 28012783; eng.
  • Goswami S, Apostolou I, Zhang J, et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest. 2018 Aug;128(9):3813–3818. PubMed PMID: 29905573; eng.
  • Li Z, Xu L, Tang N, et al. The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Lett. 2014 Aug;588(17):3000–3007. PubMed PMID: 24928441; eng.
  • Wang Y, Hou N, Cheng X, et al. Ezh2 acts as a tumor suppressor in kras-driven lung adenocarcinoma. Int J Biol Sci. 2017 May;13(5):652–659. PubMed PMID: 28539837; eng.
  • Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018 May;19(5):649–659. PubMed PMID: 29650362; eng.
  • Riquelme E, Behrens C, Lin HY, et al. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations. Cancer Res. 2016 Feb;76(3):675–685. PubMed PMID: 26676756; eng.
  • Kang KA, Piao MJ, Kim KC, et al. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 2014 Apr;5:e1183. PubMed PMID: 24743738; eng.
  • Kang KA, Ryu YS, Piao MJ, et al. DUOX2-mediated production of reactive oxygen species induces epithelial mesenchymal transition in 5-fluorouracil resistant human colon cancer cells. Redox Biol. 2018 Jul;17:224–235. PubMed PMID: 29715584; eng.
  • Eren E, Tufekci KU, Isci KB, et al. Sulforaphane inhibits lipopolysaccharide-induced inflammation, cytotoxicity, oxidative stress, and miR-155 expression and switches to mox phenotype through activating extracellular signal-regulated kinase 1/2-nuclear factor erythroid 2-related factor 2/antioxidant response element pathway in murine microglial cells. Front Immunol. 2018 Jan;9:36. PubMed PMID: 29410668; eng.
  • Chen C, Jiang X, Gu S, et al. MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells. Toxicol Lett. 2017 Aug;278:38–47. PubMed PMID: 28688901; eng.
  • Gu S, Lai Y, Chen H, et al. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci Rep. 2017 Sep;7:12155. PubMed PMID: 28939896; eng.
  • DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011 Jul;475(7354):106–109. PubMed PMID: 21734707; eng.
  • Tao S, Rojo de la Vega M, Chapman E, et al. The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer. Mol Carcinog. 2018 Feb;57(2):182–192. PubMed PMID: 28976703; eng.
  • Song NY, Zhu F, Wang Z, et al. IKKalpha inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc Natl Acad Sci USA. 2018 Jan;115(4):E812–E821. PubMed PMID: 29311298; eng.
  • Vreka M, Lilis I, Papageorgopoulou M, et al. IkappaB kinase alpha is required for development and progression of KRAS-mutant lung adenocarcinoma. Cancer Res. 2018 Jun;78(11):2939–2951. PubMed PMID: 29588349; eng.
  • Li W, Thakor N, Xu EY, et al. An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res. 2010 Jan;38(3):778–788. PubMed PMID: 19934254; eng.
  • Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013 Dec;12(12):931–947. PubMed PMID: 24287781; eng.
  • Dai X, Yan X, Zeng J, et al. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3beta/Fyn-mediated Nrf2 activation in diabetic limb ischemia. Circ Res. 2017 Mar;120(5):e7–e23. PubMed PMID: 28137917; eng.
  • Li Q, Niu C, Zhang X, et al. Gastrodin and isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: involvement of Nrf2 nuclear translocation. ACS Chem Neurosci. 2018 Mar;9(3):482–493. PubMed PMID: 29115830; eng.
  • Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018 Jul;34(1):21-43. Pubmed PMID: 29731393; eng.
  • Li C, Chen T, Zhou H, et al. Schisantherin A attenuates neuroinflammation in activated microglia: role of Nrf2 activation through ERK phosphorylation. Cell Physiol Biochem. 2018 Jun;47(5):1769–1784. PubMed PMID: 29953988; eng.
  • Mathur A, Pandey VK, Kakkar P. Activation of GSK3beta/beta-TrCP axis via PHLPP1 exacerbates Nrf2 degradation leading to impairment in cell survival pathway during diabetic nephropathy. Free Radic Biol Med. 2018 May;120:414–424.
  • Jung BJ, Yoo HS, Shin S, et al. Dysregulation of NRF2 in cancer: from molecular mechanisms to therapeutic opportunities. Biomol Ther. 2018 Jan;26(1):57–68. PubMed PMID: 29212307; eng.
  • Jain A, Lamark T, Sjottem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010 Jul;285(29):22576–22591. PubMed PMID: 20452972; eng.
  • Umemura A, He F, Taniguchi K, et al. p62, Upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell. 2016 Jun;29(6):935–948. PubMed PMID: 27211490; eng.
  • Wang Y, Zhang J, Huang ZH, et al. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis. 2017 Jun;8(6):e2876. PubMed PMID: 28617433; eng.
  • Inoue D, Suzuki T, Mitsuishi Y, et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 2012 Apr;103(4):760–766. PubMed PMID: 22320446; eng.
  • Hast BE, Goldfarb D, Mulvaney KM, et al. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 2013 Apr;73(7):2199–2210. PubMed PMID: 23382044; eng.
  • Lu K, Alcivar AL, Ma J, et al. NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction. Cancer Res. 2017 Jun;77(11):2881–2892. PubMed PMID: 28416489; eng.
  • Wang Q, Ma J, Lu Y, et al. CDK20 interacts with KEAP1 to activate NRF2 and promotes radiochemoresistance in lung cancer cells. Oncogene. 2017 Sep;36(37):5321–5330. PubMed PMID: 28534518; eng.
  • Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018 Jun;134:92–99. PubMed PMID: 29913224; eng.
  • Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008 May;1783(5):713–727. PubMed PMID: 18241676; eng.
  • Kawai Y, Garduno L, Theodore M, et al. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem. 2011 Mar;286(9):7629–7640. PubMed PMID: 21196497;eng.
  • Tian Y, Liu Q, He X, et al. Emerging roles of Nrf2 signal in non-small cell lung cancer. J Hematol Oncol. 2016 Feb;9:14. PubMed PMID: 26922479; eng.
  • Tao S, Wang S, Moghaddam SJ, et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 2014 Dec;74(24):7430–7441. PubMed PMID: 25339352; eng.
  • Wakabayashi N, Skoko JJ, Chartoumpekis DV, et al. Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol Cell Biol. 2014 Feb;34(4):653–663. PubMed PMID: 24298019; eng.
  • Zhao Q, Mao A, Yan J, et al. Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells. Int J Oncol. 2016 Feb;48(2):765–773. PubMed PMID: 26691854; eng.
  • Satoh H, Moriguchi T, Saigusa D, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 2016 May;76(10):3088. PubMed PMID: 27020858; eng.
  • Singh A, Venkannagari S, Oh KH, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016 Nov;11(11):3214–3225. PubMed PMID: 27552339; eng.
  • Liu X, Zhu Q, Zhang M, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2018 Apr;2018:7161592. PubMed PMID: 29854090; eng.
  • Zhu J, Wang H, Chen F, et al. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic Biol Med. 2016 Oct;99:544–556. PubMed PMID: 27634172; eng.
  • Khamari R, Trinh A, Gabert PE, et al. Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors. Cell Death Dis. 2018 Feb;9(3):325. PubMed PMID: 29487283; eng.
  • Krall EB, Wang B, Munoz DM, et al. KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife. 2017 Feb:6. PubMed PMID: 28145866; eng.
  • Endo H, Owada S, Inagaki Y, et al. Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Sci Rep. 2018 Jul;8(1):10122. PubMed PMID: 29973599; eng.
  • Zhao D, Badur MG, Luebeck J, et al. Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis. Mol Cell. 2018 Feb;69(4):699–708.e7. Pubmed PMID: 29452643; eng.
  • DeNicola GM, Chen P- H, Mullarky E, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015 Oct;47(12):1475–1481. PubMed PMID: 26482881; eng.
  • Chen PH, Smith TJ, Wu J, et al. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. EMBO J. 2017 Aug;36(15):2233–2250. PubMed PMID: 28663241; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.