2,422
Views
10
CrossRef citations to date
0
Altmetric
Short Communication

Synthesis of thiazolidin-4-ones and thiazinan-4-ones from 1-(2-aminoethyl)pyrrolidine as acetylcholinesterase inhibitors

, , , , , , , , , , & show all
Pages 31-41 | Received 18 Jul 2019, Accepted 30 Sep 2019, Published online: 23 Oct 2019

References

  • Precoma JM, Berumen LC, Padilla K, Alcocer GG. Therapies for prevention and treatment of alzheimer's disease. BioMed Res Int ID 2016;2016:2589276–17.
  • Ocampo AB, Lopera F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb Med 2016;47:203–12.
  • Costa JS, Lopes JPB, Russowsky D, et al. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors. Eur J Med Chem 2013;62:556–63.
  • Vieira THF, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: targeting the cholinergic system. Curr Neuropharmacol 2016;14:101–15.
  • Kumar A, Nisha CM, Silakari C, et al. Current and novel therapeutic molecules and targets in Alzheimer's disease. J Formos Med Assoc 2016;15:3–10.
  • Kumar KSS, Mohan CD, Jagadish S, et al. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of arecoline, 4-thiazolidinone- and piperidine- based conjugates. Asian J Pharm Clin Res 2015;8:142–8.
  • Wu WY, Dai YC, Li NG, et al. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 2017;32:572–87.
  • Guzior N, Wi.eckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of alzheimer’s disease. Curr Med Chem 2014;22:373–404.
  • Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer's disease: pharmacotherapeutics and biotechnological interventions. Biotechnol Adv 2017;35:178–216.
  • Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014;57:10257–74.
  • Bosenbecker J, Bareño VDO, Difabio R, et al. Synthesis and antioxidant activity of 3-(pyridin-2-yl,ethyl)-1,3-thiazinan(thiazolidin)-4-ones. J Biochem Mol Toxic 2014;28:425–32.
  • Bielenica A, Sanna G, Madeddu S, et al. New thiourea and 1,3-thiazolidin-4-one derivatives effective on the HIV-1 virus. Chem Biol Drug Des 2017;90:883–91.
  • Ansari MF, Idrees D, Hassan MI, et al. Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: targeting human carbonic anhydrase IX. Eur J Med Chem 2018;144:544–56.
  • da Silva DS, da Silva CEH, Soares MSP, et al. Thiazolidin-4-ones from 4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde: synthesis, antiglioma activity and cytotoxicity. Eur J Med Chem 2016;124:574–82.
  • Gouvêa DP, Vasconcellos FA, Berwaldt GA, et al. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-ones: synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur J Med Chem 2016;118:259–65.
  • Patel NB, Patel MD. Synthesis and evaluation of antibacterial and antifungal activities of 4-thiazolidinones and 2-azetidinones derivatives from chalcone. Med Chem Res 2017;26:1772–83.
  • Raza S, Srivastava SP, Srivastava DS, et al. Thiazolidin-4-one and thiazinan-4-one derivatives analogous to rosiglitazone as potential antihyperglycemic and antidyslipidemic agents. Eur J Med Chem 2013;63:611–20.
  • Solomon VR, Pundir S, Le HT, Lee H. Design and synthesis of novel quinacrine-[1,3]-thiazinan-4-one hybrids for their anti-breast cancer activity. Eur J Med Chem 2018;143:1028–38.
  • Kumawat MK, Singh UP, Singh B, et al. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylamino)propyl)-1,3-thiazinan-4-one derivatives. Arab J Chem 2016;9:643–7.
  • Pramanik S, Kumar A. Synthesis of various 3-(6-substituted-3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-benzopyran-4-yl)-2-substituted-1,3-thiazinan-4-ones for antihypertensive activity. World J Pharm Pharm Sci 2015;4:888–901.
  • Elenich IP, Rassukana YV, Khomutnik YY, et al. Synthesis, the antioxidant and antibacterial activity of fluoroalkyl substituted thiazolidinones and thiazinanones incorporating an aminophosphonate or aminocarboxylate fragment. Zh Org Farm Khim 2014;12:45–8.
  • Tripathi AC, Gupta SJ, Fatima GN, et al. 4-Thiazolidinones: the advances continue. Eur J Med Chem 2014;24:52–77.
  • Neves AHS, da Silva DS, Siqueira GM, et al. The antinociceptive evaluation of 2,3-substituted-1,3-thiazolidin-4-ones through thermal stimulation in mice. Med Chem Res 2018;27:186–93.
  • Neves AM, Campos Junir JC, Gouvêa DP, et al. Synthesis of thiazolidin-4-one and thiazinan-4-one derivatives analogous to rosiglitazone. J Het Chem 2019;56:251–9.
  • Zehetmeyr FK, da Silva M, Pereira KM, et al. Ovicidal in vitro activity of 2-aryl-3-(2-morpholinoethyl)thiazolidin-4-ones and 2-aryl-3-(3-morpholino-propyl)thiazolidin-4-ones against Fasciola hepatica (Linnaeus, 1758). Exp Parasitol 2018;192:60–4.
  • Drawanz BB, Zimmer GC, Rodrigues LV, et al. 5,6,7,8-Tetrahydronaphthalen-1-amine as precursor for thiazolidinones and benzothiazepinones: synthesis and atropisomeric relationship. Synthesis 2017;49:5167–75.
  • Berwaldt GA, Gouvêa DP, da Silva DS, et al. Synthesis and biological evaluation of benzothiazin-4-ones: a possible new class of acetylcholinesterase inhibitors. J Enz Inhibit Med Chem 2019;34:197–203.
  • Elmann GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 1976;72:248–54.
  • Gottfried C, Valentim L, Salbego C, et al. Regulation of protein phosphorylation in astrocyte cultures by external calcium ions: specific effects on the phosphorylation of glial fibrillary acidic protein (GFAP), vimentin and heat shock protein 27 (HSP27). Brain Res 1999;833:142–9.
  • Saxena M, Dubey R. Target enzyme in alzheimer's disease: acetylcholinesterase inhibitors. Curr Top Med Chem 2019;19:264–75.
  • Jo T, Nho K, Saykin AJ. Deep learning in alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019;11:220.
  • Tiwari S, Atluri V, Kaushik A, et al. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019;14:5541–54.
  • Briggs R, Kennelly SP, O'Neill D. Drug treatments in Alzheimer's disease. Clin Med (Lond) 2016;16:247–53.
  • Silman I, Sussman JL. Recent developments in structural studies on acetylcholinesterase. J Neurochem 2017;2:19–25.
  • Wiesner J, Kříž Z, Kuča K, et al. Acetylcholinesterases-the structural similarities and differences. J Enzyme Inhib Med Chem 2007;22:417–24.
  • Ozadali K, Ozkannli F, Erol D, et al. Synthesis and biological activities of some thiazolidin-4-ones. Arzneimittelforschung 2006;56:678–81.
  • Nam SO, Park DH, Lee YH, et al. Synthesis of aminoalkyl-substituted coumarin derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2014;22:1262–7.
  • Tang H, Ning FX, Wei YB, et al. Derivatives of oxoisoaporphine alkaloids: a novel class of selective acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2007;17:3765–8.