4,175
Views
6
CrossRef citations to date
0
Altmetric
Short Communication

Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors

, , , , , , , , , , & show all
Pages 1387-1402 | Received 13 Feb 2020, Accepted 08 May 2020, Published online: 07 Jul 2020

References

  • Proulx C, Sabatino D, Hopewell R, et al. Azapeptides and their therapeutic potential. Future Med Chem 2011;3:1139–64.
  • Aubin S, Martin B, Delcros JG, et al. Retro hydrazino-azapeptoids as peptidomimetics of proteasome inhibitors. J Med Chem 2005;48:330–4.
  • Graybill TL, Ross MJ, Gauvin BR, et al. Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg Med Chem Lett 1992;2:1375–80.
  • Ekici OD, Götz MG, James KE, et al. Aza-peptide michael acceptors: a new class of inhibitors specific for caspases and other clan cd cysteine proteases. J Med Chem 2004;47:1889–92.
  • Asgian JL, James KE, Li ZZ, et al. Aza-peptide epoxides: a new class of inhibitors selective for clan cd cysteine proteases. J Med Chem 2002;45:4958–60.
  • James KE, Asgian JL, Li ZZ, et al. Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8. J Med Chem 2004;47:1553–74.
  • Götz MG, James KE, Hansell E, et al. Aza-peptidyl michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens. J Med Chem 2008;51:2816–32.
  • Löser R, Frizler M, Schilling K, Gütschow M. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew Chem Int Ed Engl 2008;47:4331–4.
  • Schmitz J, Beckmann AM, Dudic A, et al. 3-Cyano-3-aza-β-amino acid derivatives as inhibitors of human cysteine cathepsins. ACS Med Chem Lett 2014;5:1076–81.
  • Bochtler M, Ditzel L, Groll M, et al. The proteasome. Annu Rev Biophys Biomol Struct 1999; 28:295–317.
  • Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994;79:13–21.
  • Dahlmann B. Role of proteasomes in disease. BMC Biochem 2007;8(Suppl 1): S3.
  • Delcros JG, Floc'h MB, Prigent C, Arlot-Bonnemains Y. Proteasome inhibitors as therapeutic agents: current and future strategies. Curr Med Chem 2003;10:479–503.
  • Zhou HJ, Aujay MA, Bennett MK, et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (pr-047). J Med Chem 2009;52:3028–38.
  • Demo SD, Kirk CJ, Aujay MA, et al. Antitumor activity of pr-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007;67:6383–91.
  • Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417–21.
  • Meregalli C. An overview of bortezomib-induced neurotoxicity. Toxics 2015;3:294–303.
  • Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 2017;14:417–33.
  • Park JE, Miller Z, Jun Y, et al. Next-generation proteasome inhibitors for cancer therapy. Transl Res 2018;198:1–16.
  • Waxman AJ, Clasen S, Hwang WT, et al. Carfilzomib-associated cardiovascular adverse events a systematic review and meta-analysis. JAMA Oncol 2018;4:e174519.
  • Kumar S, Moreau P, Hari P, et al. Management of adverse events associated with ixazomib plus lenalidomide/dexamethasone in relapsed/refractory multiple myeloma. Br J Haematol 2017;178:571–82.
  • Salvesen GS. Caspases and apoptosis. Essays Biochem 2002;38:9–19.
  • Salvesen GS. Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002;9:3–5.
  • Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999;45:421–9.
  • Thornberry NA, Peterson EP, Zhao JJ, et al. Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 1994;33:3934–40.
  • Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme b. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17907–11.
  • Thornberry NA. The caspase family of cysteine proteases. Br Med Bull 1997;53:478–90.
  • Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol 1998;5:R97–103.
  • Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011;34:646–56.
  • Ishii S. Legumain: asparaginyl endopeptidase. Meth. Enzymol 1994;244:604–15.
  • Abdul Alim M, Tsuji N, Miyoshi T, et al. Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick haemaphysalis longicornis. Insect Biochem Mol Biol 2007;37:911–22.
  • Liu C, Sun C, Huang H, et al. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 2003;63:2957–64.
  • Chen JM, Dando PM, Rawlings ND, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem 1997;272:8090–8.
  • Hara-Nishimura I, Inoue K, Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 1991;294:89–93.
  • Davis AH, Nanduri J, Watson DC. Cloning and gene expression of schistosoma mansoni protease. J Biol Chem 1987;262:12851–5.
  • Sojka D, Hajdusek O, Dvorak J, et al. Irae: an asparaginyl endopeptidase (legumain) in the gut of the hard tick ixodes ricinus. Int J Parasitol 2007;37:713–24.
  • Delcroix M, Sajid M, Caffrey CR, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006;281:39316–29.
  • Sajid M, McKerrow JH, Hansell E, et al. Functional expression and characterization of schistosoma mansoni cathepsin b and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol 2003;131:65–75.
  • Kilpatrick AM, Dobson ADM, Levi T, et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc Lond B Biol Sci 1722;2017:372.
  • Steinmann P, Keiser J, Bos R, et al. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 2006;6:411–25.
  • Kaiser M, Milbradt AG, Siciliano C, et al. Tmc-95a analogues with endocyclic biphenyl ether group as proteasome inhibitors. Chem Biodivers 2004;1:161–73.
  • Caffrey CR, Mathieu MA, Gaffney AM, et al. Identification of a cdna encoding an active asparaginyl endopeptidase of schistosoma mansoni and its expression in pichia pastoris. FEBS Lett 2000;466:244–8.
  • Fang B, Boross PI, Tozser J, Weber IT. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. J Mol Biol 2006;360:654–66.
  • Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 1997;272:25719–23.
  • Liebschner D, Afonine PV, Baker ML, Bunkoczi G, et al. Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr D Struct Biol 2019;75:861–77.
  • Moriarty NW, Grosse-Kunstleve RW, Adams PD. Electronic ligand builder and optimization workbench (elbow): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 2009;65:1074–80.
  • Moriarty NW, Draizen EJ, Adams PD. An editor for the generation and customization of geometry restraints. Acta Crystallogr D Struct Biol 2017;73:123–30.
  • Afonine PV, Grosse-Kunstleve RW, Echols N, et al. Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D Biol Crystallogr 2012;68:352–67.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr 2010;66:486–501.
  • Mathieu MA, Bogyo M, Caffrey CR, et al. Substrate specificity of schistosome versus human legumain determined by p1-p3 peptide libraries. Mol Biochem Parasitol 2002;121:99–105.
  • Bogyo M, Shin S, McMaster JS, Ploegh HL. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 1998;5:307–20.
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–58.
  • Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403.
  • Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on mhc class i molecules. Cell 1994;78:761–71.
  • Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/cpp32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–25.
  • Mittl PR, Di Marco S, Krebs JF, et al. Structure of recombinant human cpp32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluoromethyl ketone. J Biol Chem 1997;272:6539–47.