5,758
Views
4
CrossRef citations to date
0
Altmetric
Articles

Word problems versus image-rich problems: an analysis of effects of task characteristics on students’ performance on contextual mathematics problems

ORCID Icon, , , &
Pages 37-52 | Received 12 Feb 2016, Accepted 25 Nov 2017, Published online: 27 Feb 2018

References

  • Baird, J.-A., Cresswell, M., & Newton, P. (2000). Would the real gold standard please step forward? Research Papers in Education, 15(2), 213–229. doi: 10.1080/026715200402506
  • Boonen, A. J. H., van Wesel, F., Jolles, J., & van der Schoot, M. (2014). The role of visual representation type, spatial ability, and reading comprehension in word problem solving: An item-level analysis in elementary school children. International Journal of Educational Research, 68(0), 15–26. doi:http://doi.org/10.1016/j.ijer.2014.08.001
  • CBS. (2012). Jaarboek Onderwijs in cijfers 2011. Retrieved from Heerlen.
  • Cito instituut voor toetsontwikkeling. (2015). Voorbeeldtoets 2F 2014 [Example numeracy test level 2F 2014]. Retrieved from http://www.cito.nl/~/media/cito_nl/files/voortgezet%20onderwijs/cito_voorbeeldtoets_2f_2014.ashx
  • Daro, P. ( Producer). (2013). Phil Daro - Against “Answer Getting”. [Video] Retrieved from https://vimeo.com/79916037
  • Depaepe, F., De Corte, E., & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26(2), 152–160. doi:http://doi.org/10.1016/j.tate.2009.03.016
  • Dewolf, T., Van Dooren, W., Ev Cimen, E., & Verschaffel, L. (2014). The impact of illustrations and warnings on solving mathematical word problems realistically. The Journal of Experimental Education, 82(1), 103–120. doi: 10.1080/00220973.2012.745468
  • Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they? Instructional Science, 43(1), 147–171. doi: 10.1007/s11251-014-9332-7
  • Fuchs, L. S., Fuchs, D., Compton, D. L., Hamlett, C. L., & Wang, A. Y. (2015). Is word-problem solving a form of text comprehension? Scientific Studies of Reading, 19(3), 204–223. doi: 10.1080/10888438.2015.1005745
  • Geiger, V., Goos, M., & Forgasz, H. (2015). A rich interpretation of numeracy for the 21st century: A survey of the state of the field. ZDM, 47(4), 531–548. doi: 10.1007/s11858-015-0708-1
  • Gill, G. T., & Hicks, R. C. (2006). Task complexity and informing science: A synthesis. Informing Science Journal, 9, 1–30. doi: 10.28945/469
  • Gravemeijer, K. (1997). Solving word problems: A case of modelling? Learning and Instruction, 7(4), 389–397. doi: 10.1016/s0959-4752(97)00011-x
  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293–307. doi:http://doi.org/10.1016/S0959-4752(97)00006-6
  • Hoogland, K. (2016). Images of numeracy: Investigating effects of visual representations of problem situations in contextual mathematical problem solving. (PhD-thesis), Technical University Eindhoven, Eindhoven, The Netherlands.
  • Hoogland, K., & De Koning, J. (2013). Dataset: Rekenen in beeld [Dataset: Images of numeracy]. http://doi.org/10.17026/dans-za6-5q6c
  • Hoogland, K., & Pepin, B. (2017). The intricacies of assessing numeracy: Investigating alternatives to word problems. Adults Learning Mathematics - An International Journal, 11(2), 14–26.
  • Hoogland, K., Pepin, B., Bakker, A., de Koning, J., & Gravemeijer, K. (2016). Representing contextual mathematical problems in descriptive or depictive form: Design of an instrument and validation of its uses. Studies in Educational Evaluation, 50, 22–32. doi: 10.1016/j.stueduc.2016.06.005
  • Hoogland, K., & Stelwagen, R. (2011). A new Dutch numeracy framework. Paper presented at the Adults Learning Mathematics , 18th International Conference, Dublin, Ireland.
  • Leppink, J., Paas, F., van Gog, T., van der Vleuten, C. P. M., & van Merriënboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30(0), 32–42. doi:http://doi.org/10.1016/j.learninstruc.2013.12.001
  • Lowrie, T., Diezmann, C., & Logan, T. (2012). A framework for mathematics graphical tasks: The influence of the graphic element on student sense making. Mathematics Education Research Journal, 24(2), 169–187. doi: 10.1007/s13394-012-0036-5
  • Mullis, I. V. S., & Martin, M. O. (Eds.). (2013). Timss 2015 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.
  • OECD. (2013). PISA 2015 draft Mathematics Framework. Retrieved from Paris, France: http://www.oecd.org/pisa/pisaproducts/Draft20PISA20201520Mathematics20Framework%20.pdf
  • Paas, F., Van Gog, T., & Sweller, J. (2010). Cognitive load theory: New conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 22(2), 115–121. doi: 10.1007/s10648-010-9133-8
  • Palm, T. (2009). Theory of authentic task situations. In L. Verschaffel, B. Greer, W. V. Dooren, & S. Mukhopadhyay (Eds.), Words and worlds - modelling verbal descriptions of situations (pp. 3–20). Rotterdam, the Netherlands: Sense.
  • PIAAC Numeracy Expert Group. (2009). PIAAC Numeracy: A conceptual framework. Retrieved from Paris, France: /content/book/9789264128859-en http://dx.doi.org/10.1787/9789264128859-en
  • Piel, S., & Schuchart, C. (2014). Social origin and success in answering mathematical word problems: The role of everyday knowledge. International Journal of Educational Research, 66(0), 22–34. doi:http://doi.org/10.1016/j.ijer.2014.02.003
  • Robinson, P. (2001). Task complexity, task difficulty, and task production: Exploring interactions in a componential framework. Applied Linguistics, 22(1), 27–57. doi: 10.1093/applin/22.1.27
  • Schnotz, W., Baadte, C., Müller, A., & Rasch, R. (2010). Creative thinking and problem solving with depictive and descriptive representations. In L. Verschaffel, E. d. Corte, T. d. Jong, & J. Elen (Eds.), Use of representations in reasoning and problem solving - analysis and improvement (pp. 11–35). London, UK: Routledge.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York, NY: McMillan.
  • Schoenfeld, A. H. (2014). Reflections on learning and cognition. ZDM, 46(3), 497–503. doi: 10.1007/s11858-014-0589-8
  • Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. A. (1994). Calculational and conceptual orientations in teaching mathematics. In A. Coxford (Ed.), 1994 yearbook of the NCTM (pp. 79–92). Reston, VA: NCTM.
  • van Gog, T., Paas, F., & Sweller, J. (2010). Cognitive load theory: Advances in research on worked examples, animations, and cognitive load measurement. Educational Psychology Review, 22(4), 375–378. doi: 10.1007/s10648-010-9145-4
  • Verschaffel, L., Corte, E. D., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4(4), 273–294. doi: 10.1016/0959-4752(94)90002-7
  • Verschaffel, L., Depaepe, F., & Van Dooren, W. (2014). Word problems in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 641–645). Dordrecht, the Netherlands: Springer.
  • Verschaffel, L., Greer, B., & De Corte, E. (Eds.) (2000). Making sense of word problems. Lisse, the Netherlands: Swets & Zeitlinger.
  • Verschaffel, L., Greer, B., Van Dooren, W., & Mukhopadhyay, S. (Eds.) (2009). Words and worlds - modelling verbal descriptions of situations. Rotterdam, the Netherlands: Sense.
  • Watson, A., & Ohtani, M. (Eds.) (2015). Task design in mathematics education - an ICMI study 22. Cham, Switzerland: Springer International.
  • Williams, G., & Clarke, D. J. (1997). The complexity of mathematics tasks. In N. Scott & H. Hollingsworth (Eds.), Mathematics: Creating the future (pp. 451–457). Melbourne, Australia: AAMT.
  • Yackel, E., & Cobb, P. (1995). Classroom sociomathematical norms and intellectual autonomy. In L. Meira & D. Carraher (Eds.), Proceedings of the nineteenth international conference for the psychology of mathematics education (Vol. 3, pp. 264–271). Recife, Brazil: Program Committee of the 19th PME conference.