881
Views
2
CrossRef citations to date
0
Altmetric
Articles

Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing

References

  • Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 14. doi:10.1167/7.13.14
  • Atkinson, J., & Braddick, O. (2012). Visual attention in the first years: Typical development and developmental disorders. Developmental Medicine & Child Neurology, 54, 589–595. doi:10.1111/j.1469-8749.2012.04294.x
  • Atmaca, S., Stadler, W., Keitel, A., Ott, D. V. M., Lepsein, J., & Prinz, W. (2013). Prediction processes during multiple object tracking (MOT): Involvement of dorsal and ventral premotor cortices. Brain and Behavior, 3, 683–700. doi:10.1002/brb3.180
  • Ballard, D., Hayhoe, M., Pook, P., & Rao, R. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 723–767. doi:10.1017/S0140525X97001611
  • Beaton, E. A., Stoddard, J., Lai, S., Lackey, J., Shi, J., Ross, J. L., & Simon, T. J. (2010). Atypical functional brain activation during a multiple object tracking task in girls with Turner syndrome: Neurocorrelates of reduced spatiotemporal resolution. American Journal on Intellectual and Developmental Disabilities, 115, 140–156. doi:10.1352/1944-7558-115.2.140
  • Boddaert, N., Mochel, F., Meresse, I., Seidenwurm, D., Cachia, A., Brunelle, F., … Zilbovicius, M. (2005). Parieto-occipital grey matter abnormalities in children with Williams syndrome. NeuroImage, 30, 721–725. doi:10.1016/j.neuroimage.2005.10.051
  • Brodeur, D. A., Trick, L. M., Flores, H., Marr, C., & Burack, J. A. (2013). Multiple-object tracking among individuals with Down syndrome and typically developing children. Development and Psychopathology, 25, 545–553. doi:10.1017/S095457941200123X
  • Brown, J. H., Johnson, M. H., Paterson, S. J., Gilmore, R., Longhi, E., & Karmiloff-Smith, A. (2003). Spatial representation and attention in toddlers with Williams syndrome and Down syndrome. Neuropsychologia, 41, 1037–1046. doi:10.1016/S0028-3932(02)00299-3
  • Burkell, J., & Pylyshyn, Z. W. (1997). Searching through selected subsets of visual displays: A test of the FINST indexing hypothesis. Spatial Vision, 11, 225–258. doi:10.1163/156856897X00203
  • Cabaral, M. H., Beaton, E. A., Stoddard, J., & Simon, T. J. (2012). Impaired multiple object tracking in children with 22q11.2 deletion syndrome. Journal of Neurodevelopmental Disorders, 4, 6. doi:10.1186/1866-1955-4-6
  • Carey, S., & Xu, F. (2001). Infants’ knowledge of objects: Beyond object files and object tracking. Cognition, 80, 179–213. doi:10.1016/S0010-0277(00)00154-2
  • Cheries, E. W., Feigenson, L., Scholl, B. J., & Carey, S. (2005). Cues to object persistence in infancy: Tracking objects through occlusion vs. implosion. Journal of Vision, 5, 352. doi:10.1167/5.8.352
  • Chiang, M.-C., Reiss, A. L., Lee, A. D., Bellugi, U., Galaburda, A., Korenberg, J. R. E. A., … Thompson, P. M. (2007). 3D pattern of brain abnormalities in Williams syndrome visualized using tensor-based morphometry. NeuroImage, 36, 1096–1109. doi:10.1016/j.neuroimage.2007.04.024
  • Culham, J., Brandt, S., Cavanagh, P., Kanwisher, N., Dale, A., & Tootell, R. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657–2670.
  • Culham, J. C., Cavanagh, P., & Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32, 737–745. doi:10.1016/S0896-6273(01)00499-8
  • Dilks, D., Landau, B., & Hoffman, J. (2008). Vision for perception and vision for action: Normal and unusual development. Developmental Science, 11, 474–486. doi:10.1111/j.1467-7687.2008.00693.x
  • Eckert, M. A., Hu, D., Eliez, S., Bellugi, U., Galaburda, A., Korenberg, J., … Reiss, A. L. (2005). Evidence for superior parietal impairment in Williams syndrome. Neurology, 64, 152–153. doi:10.1212/01.WNL.0000148598.63153.8A
  • Elliott, C. D. (1990). Differential Abilities Scales. San Antonio, TX: Psychological Corporation.
  • Ewart, A. K., Morris, C. A., Atkinson, D., Jin, W., Sternes, K., Spallone, P., … Keating, M. T. (1993). Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nature Genetics, 5, 11–16. doi:10.1038/ng0993-11
  • Faria, A. F., Landau, B., O’Hearn, K., Li, X., Jiang, H., Zhang, J., … Susumu, M. (2012). Quantitative analysis of gray and white matter in Williams syndrome. NeuroReport, 23, 283–289. doi:10.1097/WNR.0b013e3283505b62
  • Fencsik, D. E., Klieger, S. B., & Horowitz, T. S. (2007). The role of location and motion information in the tracking and recovery of moving objects. Perception & Psychophysics, 69, 567–577. doi:10.3758/BF03193914
  • Franconeri, S. L., Lin, J. Y., Enns, J. T., Pylyshyn, Z. W., & Fisher, B. (2008). Evidence against a speed limit in multiple-object tracking. Psychonomic Bulletin & Review, 15, 802–808. doi:10.3758/PBR.15.4.802
  • Franconeri, S. L., Pylyshyn, Z. W., & Scholl, B. J. (2012). A simple proximity heuristic allows tracking of multiple objects through occlusion. Attention, Perception, & Psychophysics, 74, 691–702. doi:10.3758/s13414-011-0265-9
  • Gaser, C., Luders, E., Thompson, P. M., Lee, A. D., Dutton, R. A., Geaga, J. A., … Korenberg, J. R. (2006). Increased local gyrification mapped in Williams syndrome. NeuroImage, 33, 46–54. doi:10.1016/j.neuroimage.2006.06.018
  • Georgopoulos, M. A., Georgopoulos, A. P., Kurz, N., & Landau, B. (2004). Figure copying in Williams syndrome and normal subjects. Experimental Brain Research, 157, 137–146. doi:10.1007/s00221-004-1834-0
  • Giaschi, D., Chapman, C., Meier, K., Narasimhan, S., & Regan, D. (2015). The effect of occlusion therapy on motion perception deficits in amblyopia. Vision Research, 114, 122–134. doi:10.1016/j.visres.2015.05.015
  • Gibson, J. J., Kaplan, G. A., Reynolds, H. N., & Wheeler, K. (1969). The change from visible to invisible: A study of optical transitions. Perception & Psychophysics, 5, 113–116. doi:10.3758/BF03210533
  • Hoeft, F., Barnea-Goraly, N., Haas, B. W., Golari, G., Ng, D., Mills, D., … Reiss, A. L. (2007). More is not always better: Increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. Journal of Neuroscience, 27, 11960. doi:10.1523/JNEUROSCI.3591-07.2007
  • Hoffman, J., Landau, B., & Pagani, B. (2003). Spatial breakdown in spatial construction: Evidence from eye fixations in children with Williams syndrome. Cognitive Psychology, 46, 260–301. doi:10.1016/S0010-0285(02)00518-2
  • Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition, 113, 150–166. doi:10.1016/j.cognition.2009.08.004
  • Horowitz, T. S., Birnkrant, R. S., Fencsik, D. E., Tran, L., & Wolfe, J. M. (2006). How do we track invisible objects? Psychonomic Bulletin & Review, 13, 516–523. doi:10.3758/BF03193879
  • Howe, P. D. L., & Holcombe, A. O. (2012). Motion information is sometimes used as an aid to the visual tracking of objects. Journal of Vision, 12(3), 1–10. doi:10.1167/12.13.10
  • Howe, P. D., Horowitz, T. S., Morocz, I. A., Wolfe, J., & Livingstone, M. S. (2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9(4), 1–11. doi:10.1167/9.4.10
  • Hulleman, J. (2005). The mathematics of multiple object tracking: From proportions correct to number of objects tracked. Vision Research, 45, 2298–2309. doi:10.1016/j.visres.2005.02.016
  • Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43, 171–216. doi:10.1006/cogp.2001.0755
  • Iordanescu, L., Grabowecky, M., & Suzuki, S. (2009). Demand-based dynamic distribution of attention and monitoring of velocities during multiple-object tracking. Journal of Vision, 9(4), 1–12. doi:10.1167/9.4.1
  • Jackowski, A. P., & Schultz, R. T. (2005). Foreshortened dorsal extension of the central sulcus in Williams syndrome. Cortex, 41, 282–290. doi:10.1016/S0010-9452(08)70266-1
  • Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L., & Ernst, T. (2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048–1058. doi:10.1162/089892901753294347
  • Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389–398. doi:10.1016/S1364-6613(98)01230-3
  • Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman Brief Intelligence Test (2nd ed.). Circle Pines, MN: American Guidance Service.
  • Keane, B. P., & Pylyshyn, Z. W. (2006). Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cognitive Psychology, 52, 346–368. doi:10.1016/j.cogpsych.2005.12.001
  • Kippenhan, J. S., Olsen, R. K., Mervis, C. B., Morris, C. A., Kohn, P., Meyer-Lindenberg, A., & Berman, K. F. (2005). Genetic contributions to human gyrification: Sulcal morphometry in Williams syndrome. Journal of Neuroscience, 25, 7840–7846. doi:10.1523/JNEUROSCI.1722-05.2005
  • Koldewyn, K., Weigelt, S., Kanwisher, N., & Jiang, Y. (2013). Multiple object tracking in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43, 1394–1405. doi:10.1007/s10803-012-1694-6
  • Landau, B., & Ferrara, K. (2013). Space and language in Williams syndrome: Insights from typical development. WIREs Cognitive Science, 4, 693–706.
  • Landau, B., & Hoffman, J. E. (2012). Spatial representation: From gene to mind. New York, NY: Oxford University Press.
  • Landau, B., Hoffman, J. E., & Kurz, N. (2006). Object recognition with severe spatial deficits in Williams syndrome: Sparing and breakdown. Cognition, 100, 483–510. doi:10.1016/j.cognition.2005.06.005
  • Leslie, A., Xu, F., Tremoulet, P., & Scholl, B. (1998). Indexing and the object concept: Developing ‘what’ and ‘where’ systems. Trends in Cognitive Science, 2, 10–18. doi:10.1016/S1364-6613(97)01113-3
  • Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the mapping between numerical approximation and number words: Evidence from Williams syndrome and typical development. Developmental Science, 17, 905–919. doi:10.1111/desc.2014.17.issue-6
  • Marenco, S., Siuta, M. A., Kippenhan, J. S., Grodofsky, S., Chang, W., Kohn, P., … Meyer-Lindenburg, A. (2007). Genetic contributions to white matter architecture revealed by diffusion tensor imaging in Williams syndrome. Proceedings of the National Academy of Sciences USA, 104, 15117. doi:10.1073/pnas.0704311104
  • Mervis, C. B., Robinson, B. F., Bertrand, J., Morris, C. A., Klein-Tasman, B. P., & Armstrong, S. C. (2000). The Williams syndrome cognitive profile. Brain and Cognition, 44, 604–628. doi:10.1006/brcg.2000.1232
  • Meyer-Lindenberg, A., Kohn, P., Mervis, C. B., Kippenhan, J. S., Olsen, R., Morris, C. A., & Berman, K. F. (2004). Neural basis of genetically determined visuospatial construction deficit in Williams syndrome. Neuron, 43, 623–631. doi:10.1016/j.neuron.2004.08.014
  • Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., … Kippenhan, S. (2005). Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. Journal of Clinical Investigation, 115, 1888–1895. doi:10.1172/JCI24892
  • Mobbs, D., Garrett, A. S., Menon, V., Rose, F. E., Bellugi, U., & Reiss, A. L. (2004). Anomalous brain activation during face and gaze processing in Williams syndrome. Neurology, 62, 2070–2076. doi:10.1212/01.WNL.0000129536.95274.DC
  • Morris, C. A. (2006). The dysmorphology, genetics, and natural history of Williams-Beuren syndrome. In C. A. Morris, H. Lenhoff, & P. Wang (Eds.), Williams-Beuren syndrome: Research, evaluation, and treatment (pp. 3–17). Baltimore, MD: Johns Hopkins University Press.
  • Musolino, J., & Landau, B. (2010). When theories don’t compete: Response to Thomas, Karaminis, and Knowland’s commentary on Musolino, Chunyo, and Landau. Language Learning and Development, 6, 126–161. doi:10.1080/15475440903507772
  • Nardini, M., Atkinson, J., Braddick, O., & Burgess, N. (2008). Developmental trajectories for spatial frames of reference in Williams syndrome. Developmental Science, 11, 583–595. doi:10.1111/desc.2008.11.issue-4
  • O’Hearn, K., Franconeri, S., Wright, C., Minshew, N., & Luna, B. (2013). The development of individuation in autism. Journal of Experimental Psychology: Human Perception and Performance, 39, 494–509.
  • O’Hearn, K., Hoffman, J. E., & Landau, B. (2010). Developmental profiles for multiple object tracking and spatial memory: Typically developing preschoolers and people with Williams syndrome. Developmental Science, 13, 430–440. doi:10.1111/desc.2010.13.issue-3
  • O’Hearn, K., Hoffman, J. E., & Landau, B. (2011). Small subitizing range in people with Williams syndrome. Visual Cognition, 19, 289–312. doi:10.1080/13506285.2010.535994
  • O’Hearn, K., Landau, B., & Hoffman, J. E. (2005). Multiple object tracking in people with Williams syndrome and in normally developing children. Psychological Science, 16, 905–912. doi:10.1111/j.1467-9280.2005.01635.x
  • Palomares, M., Landau, B., & Egeth, H. (2009). Orientation perception in Williams syndrome: Discrimination and integration. Brain and Cognition, 70, 21–30. doi:10.1016/j.bandc.2008.11.007
  • Pitts, H. C., & Mervis, C. B. (2016). Performance on the Kaufman Brief Intelligence Test-2 by children with Williams syndrome. American Journal on Intellectual and Developmental Disabilities, 121, 33–47. doi:10.1352/1944-7558-121.1.33
  • Pylyshyn, Z. W., & Annan, A. (2006). Dynamics of selection in multiple object tracking (MOT). Spatial Vision, 19, 485–504. doi:10.1163/156856806779194017
  • Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial index model. Cognition, 32, 65–97. doi:10.1016/0010-0277(89)90014-0
  • Pylyshyn, Z. W. (1994). Some primitive mechanisms of spatial attention. Cognition, 50, 363–384. doi:10.1016/0010-0277(94)90036-1
  • Pylyshyn, Z. W. (2000). Situating the world in vision. Trends in Cognitive Science, 4, 197–207. doi:10.1016/S1364-6613(00)01477-7
  • Pylyshyn, Z. W., Burkell, J., Fisher, B., Sears, C., Schmidt, W., & Trick, L. (1994). Multiple parallel access in visual attention. Canadian Journal of Experimental Psychology, 48, 260–283. doi:10.1037/1196-1961.48.2.260
  • Pylyshyn, Z. W., & Storm, R. (1988). Tracking multiple independent objects: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197. doi:10.1163/156856888X00122
  • Reiss, A. L., Eliez, S., Schmitt, J. E., Straus, E., Lai, Z., Jones, W., & Bellugi, U. (2000). IV. Neuroanatomy of Williams syndrome: A high-resolution MRI study. Journal of Cognitive Neuroscience, 12(Suppl. 1), 65–73. doi:10.1162/089892900561986
  • Richardson, D. C., & Kirkham, N. Z. (2004). Multi-modal events and moving locations: Eye movements of adults and 6-month-olds reveal dynamic spatial indexing. Journal of Experimental Psychology: General, 133, 46–62. doi:10.1037/0096-3445.133.1.46
  • Scholl, B. J. (2001). Spatiotemporal priority and object identity. Cahiers De Psychologie Cognitive, 20, 359–371.
  • Scholl, B., & Leslie, A. (1999). Explaining the infant’s object concept: Beyond the perception/cognition dichotomy. In E. Lepore & Z. W. Pylshyn (Eds.), What is cognitive science? (pp. 26–73). Oxford: Blackwell.
  • Scholl, B., & Pylyshyn, Z. (1999). Tracking multiple objects through occlusion: Clues to visual objecthood. Cognitive Psychology, 38, 259–290. doi:10.1006/cogp.1998.0698
  • Scholl, B., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80, 159–177. doi:10.1016/S0010-0277(00)00157-8
  • Shim, W. M., Alvarez, G. A., & Jiang, Y. V. (2008). Spatial separation between targets constrains maintenance of attention on multiple objects. Psychonomic Bulletin & Review, 15, 390–397. doi:10.3758/PBR.15.2.390
  • Spelke, E. (1990). Principles of object perception. Cognitive Science, 14, 29–56. doi:10.1207/s15516709cog1401_3
  • Strømme, P., Bjørnstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. Journal of Child Neurology, 17, 269–271. doi:10.1177/088307380201700406
  • Tager-Flusberg, H., Plesa-Skwerer, D., Faja, S., & Joseph, R. M. (2003). People with Williams syndrome process faces holistically. Cognition, 89, 11–24. doi:10.1016/S0010-0277(03)00049-0
  • Tombu, M., & Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108, 1–25. doi:10.1016/j.cognition.2007.12.014
  • Trick, L. M., Hollinsworth, H., & Brodeur, D. (2009). Multiple-object tracking across the lifespan: Do different factors contribute to diminished performance in different age groups? In D. Dendrick & L. Trick (Eds.), Computation, cognition, and Pylyshyn (pp. 79–99). Cambridge, MA: MIT Press.
  • Trick, L. M., Jaspers-Fayer, F., & Sethi, N. (2005). Multiple-object tracking in children: The ‘catch the spies’ task. Cognitive Development, 20, 373–387. doi:10.1016/j.cogdev.2005.05.009
  • Ullman, S. (1984). Visual routines. Cognition, 18, 97–159. doi:10.1016/0010-0277(84)90023-4
  • Van Essen, D. C., Dierker, D., Snyder, A. Z., Raichle, M. E., Reiss, A. L., & Korenberg, J. (2006). Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface-based analyses. Journal of Neuroscience, 26, 5470–5483. doi:10.1523/JNEUROSCI.4154-05.2006
  • vanMarle, K., & Scholl, B. J. (2003). Attentive tracking of objects vs. substances. Psychological Science, 14, 498–504. doi:10.1111/1467-9280.03451
  • Vicari, S., & Carlesimo, G. A. (2006). Short-term memory deficits are not uniform in Down and Williams syndromes. Neuropsychology Review, 16, 87–94. doi:10.1007/s11065-006-9008-4
  • Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340. doi:10.1016/0010-0285(92)90010-Y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.