1,087
Views
32
CrossRef citations to date
0
Altmetric
Research Paper

Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma

, , , , &
Pages 602-609 | Received 21 Nov 2014, Accepted 05 Feb 2015, Published online: 14 Apr 2015

References

  • Ham SJ, Schraffordt Koops H, van der Graaf WT, van Horn JR, Postma L, Hoekstra HJ. Historical, current and future aspects of osteosarcoma treatment. Eur J Surg Oncol 1998; 24: 584–600; PMID:9870738; http://dx.doi.org/10.1016/S0748-7983(98)93896-3.
  • Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther 2006; 6: 1075–85; PMID:16831079; http://dx.doi.org/10.1586/14737140.6.7.1075.
  • Berberoglu S, Oguz A, Aribal E, Ataoglu O. Osteoblastoma response to radiotherapy and chemotherapy. Med Pediatr Oncol 1997; 28: 305–9; PMID:9078333.
  • Camitta B, Wells R, Segura A, Unni KK, Murray K, Dunn D. Osteoblastoma response to chemotherapy. Cancer 1991; 68: 999–1003; PMID:1913494; http://dx.doi.org/10.1002/1097-0142(19910901)68:5%3c999::AID-CNCR2820680515%3e3.0.CO;2-Z.
  • Zardawi SJ, O'Toole SA, Sutherland RL, Musgrove EA. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 2009; 24: 385–98; PMID:19130408.
  • Gorelik L, Flavell RA. Transforming growth factor-β in T-cell biology. Nat Rev Immunol 2002; 2: 46–53; PMID:11905837; http://dx.doi.org/10.1038/nri704.
  • Fukaya Y, Ishiguro N, Senga T, Ichigotani Y, Sohara Y, Tsutsui M, Shioura T, Iwamoto T, Hamaguchi M. A role for PI3K-Akt signaling in pulmonary metastatic nodule formation of the osteosarcoma cell line, LM8. Oncol Rep 2005; 14: 847–52; PMID:16142341.
  • He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Guo FJ, Feng JX. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev 2014; 15: 5967–76; PMID:25124559; http://dx.doi.org/10.7314/APJCP.2014.15.15.5967.
  • Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF. The molecular pathogenesis of osteosarcoma: a review. Sarcoma 2011; 2011: 959248; PMID:21559216; http://dx.doi.org/10.1155/2011/959248.
  • Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol 2013; 25: 398–406; PMID:23666471; http://dx.doi.org/10.1097/CCO.0b013e3283622c1b.
  • Dai X, Ma W, He X, Jha RK. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing's sarcoma. Med Sci Monit 2011; 17: RA177–90; PMID:21804475; http://dx.doi.org/10.12659/MSM.881893.
  • Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8: 627–44; PMID:19644473; http://dx.doi.org/10.1038/nrd2926.
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501; PMID:12094235; http://dx.doi.org/10.1038/nrc839.
  • Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–64; PMID:16288292; http://dx.doi.org/10.1038/sj.onc.1209085.
  • Stauffer F, Maira SM, Furet P, Garcia-Echeverria C. Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway. Bioorg Med Chem Lett 2008; 18: 1027–30; PMID:18248814; http://dx.doi.org/10.1016/j.bmcl.2007.12.018.
  • Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB, Signoretti S, Mier JW. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res 2010; 16: 3628–38; PMID:20606035; http://dx.doi.org/10.1158/1078-0432.CCR-09-3022.
  • Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008; 7: 1851–63; PMID:18606717; http://dx.doi.org/10.1158/1535-7163.MCT-08-0017.
  • Hamidi H, Lu M, Chau K, Anderson L, Fejzo M, Ginther C, Linnartz R, Zubel A, Slamon DJ, Finn RS. KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition. Br J Cancer 2014; PMID:25167228.
  • Zhu YR, Xu Y, Fang JF, Zhou F, Deng XW, Zhang YQ. Bufotalin-induced apoptosis in osteoblastoma cells is associated with endoplasmic reticulum stress activation. Biochem Biophys Res Commun 2014; 451: 112–8; PMID:25068992; http://dx.doi.org/10.1016/j.bbrc.2014.07.077.
  • Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, Bastian BC. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 2014; 33: 4724–34; PMID:24141786; http://dx.doi.org/10.1038/onc.2013.418.
  • Anninga JK, Gelderblom H, Fiocco M, Kroep JR, Taminiau AH, Hogendoorn PC, Egeler RM. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer 2011; 47: 2431–45; PMID:21703851; http://dx.doi.org/10.1016/j.ejca.2011.05.030.
  • Ritter J, Bielack SS. Osteosarcoma. Ann Oncol 2010; 21 Suppl 7: vii320-5; PMID:20943636.
  • Garcia-Echeverria C. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. Bioorg Med Chem Lett 2010; 20: 4308–12; PMID:20561789; http://dx.doi.org/10.1016/j.bmcl.2010.05.099.
  • Konings IR, Verweij J, Wiemer EA, Sleijfer S. The applicability of mTOR inhibition in solid tumors. Curr Cancer Drug Targets 2009; 9: 439–50; PMID:19442061; http://dx.doi.org/10.2174/156800909788166556.
  • Zhou HY, Huang SL. Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer 2012; 31: 8–18; PMID:22059905; http://dx.doi.org/10.5732/cjc.011.10282.
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22; PMID:17613433; http://dx.doi.org/10.1016/j.ccr.2007.05.008.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274–93; PMID:22500797; http://dx.doi.org/10.1016/j.cell.2012.03.017.
  • Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther 2011; 10: 395–403; PMID:21216931; http://dx.doi.org/10.1158/1535-7163.MCT-10-0905.
  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500–8; PMID:16452206; http://dx.doi.org/10.1158/0008-5472.CAN-05-2925.
  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007; 26: 1932–40; PMID:17001314; http://dx.doi.org/10.1038/sj.onc.1209990.
  • Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R, Charrier C, Battaglia S, Pilet P, Denis MG, et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res 2010; 70: 10329–39; PMID:20971812; http://dx.doi.org/10.1158/0008-5472.CAN-10-0578.
  • Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9: 59–71; PMID:15784165; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00337.x.
  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004; PMID:16341064; http://dx.doi.org/10.1038/nrd1902.
  • Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, Azab F, Melhem M, Ngo HT, Quang P, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 2010; 115: 559–69; PMID:19965685; http://dx.doi.org/10.1182/blood-2009-07-235747.
  • Moon du G, Lee SE, Oh MM, Lee SC, Jeong SJ, Hong SK, Yoon CY, Byun SS, Park HS, Cheon J. NVP-BEZ235, a dual PI3K/mTOR inhibitor synergistically potentiates the antitumor effects of cisplatin in bladder cancer cells. Int J Oncol 2014; 45: 1027–35; PMID:24969552.
  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–74; PMID:18725988.
  • Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH. Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 2010; 226: 1915–25; http://dx.doi.org/10.1002/jcp.22522.
  • Chen MB, Wu XY, Gu JH, Guo QT, Shen WX, Lu PH. Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem Biophys 2011; 60: 311–22; PMID:21274754; http://dx.doi.org/10.1007/s12013-011-9153-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.