1,816
Views
51
CrossRef citations to date
0
Altmetric
Articles

Does the Approximate Number System Serve as a Foundation for Symbolic Mathematics?

&

References

  • Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11(3), 495–503. doi:10.1007/s10071-008-0140-9
  • Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(1), 26. doi:10.1186/1744-9081-9-26
  • Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35(3), 657–670. doi:10.1016/j.ridd.2013.12.010
  • Barth, H., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103(4), 441–454. doi:10.1016/j.jecp.2009.01.014
  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222. doi:10.1016/j.cognition.2004.09.011
  • Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116–14121. doi:10.1073/pnas.0505512102
  • Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863. doi:10.1073/pnas.0910967107
  • Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196–198. doi:10.1126/science.aac7427
  • Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. doi:10.1016/j.jecp.2012.09.015
  • Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83(3), 223–240. doi:10.1016/S0010-0277(02)00005-7
  • Brannon, E. M., & Terrace, H. S. (1998). Ordering of the Numerosities 1 to 9 by Monkeys. Science, 282(5389), 746–749. doi:10.1126/science.282.5389.746
  • Bugden, S., & Ansari, D. (2015). Probing the nature of deficits in the “Approximate number system” in children with persistent developmental Dyscalculia. Developmental Science, n/a–n/a. doi:10.1111/desc.12324
  • Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using cognitive training studies to unravel the mechanisms by which the approximate number system supports symbolic math ability. Current Opinion in Behavioral Sciences, 10, 73–80. doi:10.1016/j.cobeha.2016.05.002
  • Bulthé, J., De Smedt, B., & Beeck, H. P. O. D. (2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. doi:10.1016/j.neuroimage.2013.10.049
  • Bulthé, J., De Smedt, B., & de Beeck, H. P. O. (2015). Visual number beats abstract numerical magnitude: format-dependent representation of Arabic digits and dot patterns in human parietal cortex. Journal of cognitive neuroscience.
  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053. doi:10.1126/science.1201536
  • Butterworth, B., & Walsh, V. (2011). Nueral basis of mathematical cognition. Current Biology, 21(16), R617–R618. doi:10.1016/j.cub.2011.07.005
  • Cantlon, J. F., & Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)? Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 32–41. doi:10.1037/0097-7403.33.1.32
  • Cantlon, J. F., Merritt, D. J., & Brannon, E. M. (2015). Monkeys display classic signatures of human symbolic arithmetic. Animal Cognition. doi:10.1007/s10071-015-0942-5
  • Carey, S. (2009). Where our number concepts come from. The Journal of philosophy, 106(4), 220.
  • Casey, B. M., Dearing, E., Dulaney, A., Heyman, M., & Springer, R. (2014). Young girls’ spatial and arithmetic performance: The mediating role of maternal supportive interactions during joint spatial problem solving. Early Childhood Research Quarterly, 29(4), 636–648. doi:10.1016/j.ecresq.2014.07.005
  • Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7(4), e33832. doi:10.1371/journal.pone.0033832
  • Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. doi:10.1016/j.actpsy.2014.01.016
  • Chu, F. W., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. doi:10.1016/j.jecp.2015.01.006
  • Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177. doi:10.1016/j.actpsy.2015.09.007
  • Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408–411. doi:10.1111/1467-9280.00177
  • Clearfield, M. W., & Mix, K. S. (2001). Amount versus number: Infants’ use of area and contour length to discriminate small sets. Journal of Cognition and Development, 2(3), 243–260. doi:10.1207/S15327647JCD0203_1
  • Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970. doi:10.1126/science.1204537
  • Cohen-Kadosh, R., Bahrami, B., Walsh, V., Butterworth, B., Popescu, T., & Price, C. J. (2011). Specialization in the human brain: The case of numbers. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00062
  • Cordes, S., & Brannon, E. M. (2008). The difficulties of representing continuous extent in infancy: Using number is just easier. Child Development, 79(2), 476–489. doi:10.1111/j.1467-8624.2007.01137.x
  • Cordes, S., & Brannon, E. M. (2009). The relative salience of discrete and continuous quantity in young infants. Developmental Science, 12(3), 453–463. doi:10.1111/j.1467-7687.2008.00781.x
  • Damarla, S. R., Cherkassky, V. L., & Just, M. A. (2016). Modality-independent representations of small quantities based on brain activation patterns: Modality-independent representations of numbers. Human Brain Mapping, 37(4), 1296–1307. doi:10.1002/hbm.23102
  • Damarla, S. R., & Just, M. A. (2013). Decoding the representation of numerical values from brain activation patterns: Decoding the representation of numerical values from brain activation patterns. Human Brain Mapping, 34(10), 2624–2634. doi:10.1002/hbm.22087
  • Davis, H., & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and a new research agenda. Behavioral and Brain Sciences, 11(04), 561–579. doi:10.1017/S0140525X00053437
  • Defever, E., De Smedt, B., & Reynvoet, B. (2013). Numerical matching judgments in children with mathematical learning disabilities. Research in Developmental Disabilities, 34(10), 3182–3189. doi:10.1016/j.ridd.2013.06.018
  • Defever, E., Reynvoet, B., & Gebuis, T. (2013). Task- and age-dependent effects of visual stimulus properties on children’s explicit numerosity judgments. Journal of Experimental Child Psychology, 116(2), 216–233. doi:10.1016/j.jecp.2013.04.006
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. doi:10.1080/02643290244000239
  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study: Mathematical learning disabilities in kindergarten. British Journal of Educational Psychology, 82(1), 64–81. doi:10.1348/2044-8279.002002
  • DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition, 142, 247–265. doi:10.1016/j.cognition.2015.05.016
  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00068
  • DeWind, N. K., & Brannon, E. M. (2016). Significant inter-test reliability across approximate number system assessments. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.00310
  • Dillon, M. R., Pires, A. C., Hyde, D. C., & Spelke, E. S. (2015). Children’s expectations about training the approximate number system. British Journal of Developmental Psychology, n/a–n/a. doi:10.1111/bjdp.12118
  • Drucker, C. B., Rossa, M. A., & Brannon, E. M. (2015). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition. doi:10.1007/s10071-015-0914-9
  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. doi:10.1016/j.jecp.2014.01.013
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. doi:10.1016/j.tics.2004.05.002
  • Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7(2), 74–79. doi:10.1111/cdep.12019
  • Fias, W., Menon, V., & Szucs, D. (2013). Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2(2), 43–47. doi:10.1016/j.tine.2013.06.006
  • Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. doi:10.1111/desc.12013
  • Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: The MIT Press.
  • Garland, A., Low, J., & Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15(6), 1129–1140. doi:10.1007/s10071-012-0537-3
  • Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20(2), 130–133. doi:10.1016/j.lindif.2009.10.008
  • Geary, D. C., & Brown, S. C. (1991). Cognitive addition: Strategy choice and speed-of-processing differences in gifted, normal, and mathematically disabled children. Developmental Psychology, 27(3), 398. doi:10.1037/0012-1649.27.3.398
  • Geary, D. C., Hoard, M. K., Nugent, L., & Rouder, J. N. (2015). Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 140, 211–227. doi:10.1016/j.jecp.2015.07.010
  • Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8(6), e67374. doi:10.1371/journal.pone.0067374
  • Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406. doi:10.1016/j.cognition.2010.02.002
  • Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number talk count more than others: Relations between parents’ input and children’s cardinal-number knowledge: Types of parent number talk. Developmental Science, 14(5), 1021–1032. doi:10.1111/j.1467-7687.2011.01050.x
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. doi:10.1037/a0012682
  • Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. doi:10.1073/pnas.1200196109
  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature Letters, 455, 665–668. doi:10.1038/nature07246
  • Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29. doi:10.1016/j.jecp.2008.04.001
  • Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49(1), 1006–1017. doi:10.1016/j.neuroimage.2009.07.071
  • Huang, Y. T., Spelke, E., & Snedeker, J. (2010). When is four far more than three? Children’s generalization of newly acquired number words. Psychological Science, 21(4), 600–606. doi:10.1177/0956797610363552
  • Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107. doi:10.1016/j.cognition.2013.12.007
  • Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition: Neural signatures of number in infants. Developmental Science, 14(2), 360–371. doi:10.1111/j.1467-7687.2010.00987.x
  • Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222–1229. doi:10.3758/s13423-011-0154-1
  • Iuculano, T., Tang, J., Hall, C. W. B., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669–680. doi:10.1111/j.1467-7687.2008.00716.x
  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382–10385. doi:10.1073/pnas.0812142106
  • Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00685
  • Kibbe, M. M., & Feigenson, L. (2015). Young children ‘solve for x’ using the Approximate Number System. Developmental Science, 18(1), 38–49.
  • Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children’s mathematical knowledge: The effect of teacher “math talk”. Developmental Psychology, 42(1), 59–69. doi:10.1037/0012-1649.42.1.59
  • Kuhn, J.-T., & Holling, H. (2014). Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Advances in Cognitive Psychology, 10(2), 59–67. doi:10.5709/acp-0157-2
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99–125. doi:10.1016/j.cognition.2003.11.004
  • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. doi:10.1016/j.cognition.2006.10.005
  • Leibovich, T., & Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 70(1), 12–23. doi:10.1037/cep0000070
  • Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J., & Gunderson, E. A. (2010). What counts in the development of young children’s number knowledge? Developmental Psychology, 46(5), 1309–1319. doi:10.1037/a0019671
  • Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy: Number sense in infancy. Current Directions in Psychological Science, 18(6), 346–351. doi:10.1111/j.1467-8721.2009.01665.x
  • Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy: Number discrimination in infants. Developmental Science, 13(6), 900–906. doi:10.1111/j.1467-7687.2009.00948.x
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability: Approximate number system and math abilities. Developmental Science, 14(6), 1292–1300. doi:10.1111/j.1467-7687.2011.01080.x
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829–838. doi:10.1016/j.jecp.2013.08.003
  • Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379. doi:10.1016/j.actpsy.2012.09.009
  • Libertus, M. E., Starr, A., & Brannon, E. M. (2014). Number trumps area for 7-month-old infants. Developmental Psychology, 50(1), 108–112. doi:10.1037/a0032986
  • Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3(1), 1.
  • Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14(5), 396–401. doi:10.1111/1467-9280.01453
  • Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737–18742. doi:10.1073/pnas.1207212109
  • Lussier, C. A., & Cantlon, J. F. (2016). Developmental bias for number words in the intraparietal sulcus. Developmental Science, n/a–n/a. doi:10.1111/desc.12385
  • Lyons, I. M., Ansari, D., & Beilock, S. L. (2015). Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 36(2), 475–488.
  • Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261. doi:10.1016/j.cognition.2011.07.009
  • Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714–726. doi:10.1111/desc.12152
  • Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational Effects of parents’ math anxiety on children’s math achievement and anxiety. Psychological Science, 26, 1480–1488. doi:10.1177/0956797615592630
  • Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and Nonsymbolic magnitude processing in the first year of formal schooling. PLOS ONE, 11(3), e0149863. doi:10.1371/journal.pone.0149863
  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (Dyscalculia): Impaired numerical acuity contributes to MLD. Child Development, 82(4), 1224–1237. doi:10.1111/j.1467-8624.2011.01608.x
  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6(9), e23749. doi:10.1371/journal.pone.0023749
  • McCrink, K., & Spelke, E. S. (2016). Non-symbolic division in childhood. Journal of Experimental Child Psychology, 142, 66–82. doi:10.1016/j.jecp.2015.09.015
  • McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776–781. doi:10.1111/j.0956-7976.2004.00755.x
  • McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740–745.
  • McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400–408. doi:10.1016/j.jecp.2009.01.013
  • Mehlis, M., Thünken, T., Bakker, T. C. M., & Frommen, J. G. (2015). Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks. Animal Cognition. doi:10.1007/s10071-015-0884-y
  • Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278–294. doi:10.1037//0033-2909.128.2.278
  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502. doi:10.1016/j.jecp.2009.02.003
  • Mussolin, C., Nys, J., Content, A., & Leybaert, J. (2014). Symbolic number abilities predict later approximate number system acuity in preschool children. PLoS ONE, 9(3), e91839. doi:10.1371/journal.pone.0091839
  • Mussolin, C., Nys, J., Leybaert, J., & Content, A. (2015). How approximate and exact number skills are related to each other across development: A review☆. Developmental Review. doi:10.1016/j.dr.2014.11.001
  • Negen, J., & Sarnecka, B. W. (2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children? British Journal of Developmental Psychology, 33(1), 92–105. doi:10.1111/bjdp.12071
  • Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00165
  • Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918. doi:10.1371/journal.pone.0067918
  • Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135. doi:10.1016/j.learninstruc.2012.08.004
  • Odic, D., Le Corre, M., & Halberda, J. (2015). Children’s mappings between number words and the approximate number system. Cognition, 138, 102–121. doi:10.1016/j.cognition.2015.01.008
  • Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293. doi:10.1016/j.jecp.2016.07.011
  • Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019. doi:10.1177/0956797613482944
  • Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200. doi:10.1016/j.cognition.2014.06.011
  • Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, bhv017. doi:10.1093/cercor/bhv017
  • Perdue, B. M., Talbot, C. F., Stone, A. M., & Beran, M. J. (2012). Putting the elephant back in the herd: Elephant relative quantity judgments match those of other species. Animal Cognition, 15(5), 955–961. doi:10.1007/s10071-012-0521-y
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. doi:10.1016/j.cognition.2010.03.012
  • Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6), 1037–1043. doi:10.1177/0956797612464057
  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305. doi:10.1016/j.neuron.2006.11.022
  • Pinhas, M., Donohue, S. E., Woldorff, M. G., & Brannon, E. M. (2014). Electrophysiological evidence for the involvement of the approximate number system in preschoolers’ processing of spoken number words. Journal of Cognitive Neuroscience, 26(9), 1891–1904. doi:10.1162/jocn_a_00631
  • Pinheiro-Chagas, P., Wood, G., Knops, A., Krinzinger, H., Lonnemann, J., Starling-Alves, I., … Haase, V. G. (2014). In how many ways is the approximate number system associated with exact calculation? PLoS ONE, 9(11), e111155. doi:10.1371/journal.pone.0111155
  • Purpura, D. J., & Logan, J. A. R. (2015). The nonlinear relations of the approximate number system and mathematical language to early mathematics development. Developmental Psychology, 51(12), 1717–1724. doi:10.1037/dev0000055
  • Ramani, G. B., Rowe, M. L., Eason, S. H., & Leech, K. A. (2015). Math talk during informal learning activities in head start families. Cognitive Development, 35, 15–33. doi:10.1016/j.cogdev.2014.11.002
  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24(4), 450–472. doi:10.1016/j.cogdev.2009.09.003
  • Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. doi:10.1016/j.cognition.2006.01.005
  • Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67(2), 271–280. doi:10.1080/17470218.2013.803581
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, n/a–n/a. doi:10.1111/desc.12372
  • Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers. PLOS ONE, 11(4), e0153072. doi:10.1371/journal.pone.0153072
  • Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101. doi:10.1016/j.jecp.2015.10.016
  • Smets, K., Sasanguie, D., Szücs, D., & Reynvoet, B. (2015). The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology, 27(3), 310–325. doi:10.1080/20445911.2014.996568
  • Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4-to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(13), 1–14.
  • Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A.-M. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 16–37. doi:10.1016/j.jecp.2015.06.011
  • Starr, A., & Brannon, E. M. (2015). Evidence against continuous variables driving numerical discrimination in infancy. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00923
  • Starr, A., DeWind, N. K., & Brannon, E. M. (in prep). The role of non-numerical stimulus features in the development of the number sense.
  • Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116–18120. doi:10.1073/pnas.1302751110
  • Szkudlarek, E., Brannon, E. M. (in prep). Approximate arithmetic training improves informal math ability in low achieving preschoolers. Unpublished data.
  • Toll, S. W., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. (2015). The development of (non-) symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences. Retrieved from http://www.sciencedirect.com/science/article/pii/S1041608015000023
  • van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17(4), 492–505. doi:10.1111/desc.12143
  • Wagner, J. B., & Johnson, S. C. (2011). An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition, 119(1), 10–22. doi:10.1016/j.cognition.2010.11.014
  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20.
  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human Behavior, Learning, and the Developing Brain: Atypical Development, 2, 212–237.
  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.
  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.