3,847
Views
4
CrossRef citations to date
0
Altmetric
Review

Alu RNA and their roles in human disease states

ORCID Icon & ORCID Icon
Pages 574-585 | Received 06 Aug 2021, Accepted 27 Sep 2021, Published online: 21 Oct 2021

References

  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
  • Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41(1):331–368.
  • Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat Rev Genet. 2007;8(12):973–982.
  • Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7. DOI:10.1186/s13100-016-0065-9.
  • Weiner AM. SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol. 2002;14(3):343–350.
  • Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked alu sequences. Nat Genet. 2003;35(1):41–48.
  • Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012;22(3):191–203.
  • Houck CM, Schmidt CW. A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol. 1979;132(3):289–306.
  • Deininger PL, Daniels GR. The recent evolution of mammalian repetitive DNA elements. Trends Genet. 1986;2:76–80.
  • Liu WM, Maraia RJ, Rubin CM, et al. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 1994;22(6):1087–1095.
  • Stenz L. The L1-dependant and Pol III transcribed Alu retrotransposon, from its discovery to innate immunity. Mol Biol Rep. 2021;48(3):2775–2789.
  • Cordaux R, Hedges DJ, Herke SW, et al. Estimating the retrotransposition rate of human Alu elements. Gene. 2006;373:134–137.
  • Häsler J, Samuelsson T, Strub K. Useful “junk”: alu RNAs in the human transcriptome. Cell Mol Life Sci. 2007;64(14):1793–1800.
  • DeCerbo J, Carmichael GG. SINEs point to abundant editing in the human genome. Genome Biol. 2005;6(4):2–5.
  • Paulson KE, Schmid CW. Transcriptional inactivity of Alu repeats in HeLa cells. Nucleic Acids Res. 1986;14(15):6145–6158.
  • Roy AM, West NC, Rao A, et al. Upstream flanking sequences and transcription of SINEs. J Mol Biol. 2000;302(1):17–25.
  • Shaikh TH, Roy AM, Kim J, et al. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol. 1997;271(2):222–234.
  • Akopian D, Shen K, Zhang X, et al. Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem. 2013;82(1):693–721.
  • Ullu E, Tschudi C. Alu sequences are processed 7SL RNA genes. Nature. 1984;312(5990):171–172.
  • Quentin Y. Origin of the Alu family: a family of alu-like monomers gave birth to the left and the right arms of the alu elements. Nucleic Acids Res. 1992b;20(13):3397–3401.
  • Quentin Y. Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 1992a;20(3):487–493.
  • Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370–379.
  • Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):236.
  • Lin L, Shen S, Tye A, et al. Diverse splicing patterns of exonized alu elements in human tissues. PLoS Genet. 2008;4(10):e1000225.
  • Price AL, Eskin E, Pevzner PA. Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res. 2004;14(11):2245–2252.
  • Bennett EA, Keller H, Mills RE, et al. Active Alu retrotransposons in the human genome. Genome Res. 2008;18(12):1875–1883.
  • Macia A, Munoz-Lopez M, Cortes JL, et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol. 2011;31(2):300–316.
  • Shankar R, Grover D, Brahmachari SK, et al. Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile alu elements. BMC Evol Biol. 2004;4(1):37.
  • Comeaux MS, Roy-Engel AM, Hedges DJ, et al. Diverse cis factors controlling Alu retrotransposition: what causes alu elements to die?. Genome Res. 2009;19(4):545–555.
  • Chen LL, Yang L. ALUternative regulation for gene expression. Trends Cell Biol. 2017;27(7):480–490.
  • Zhang XO, Gingeras TR, Weng Z. Genome-wide analysis of polymerase III–transcribed Alu elements suggests cell-type–specific enhancer function. Genome Res. 2019a;29(9):1402–1414.
  • Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab. 1999;67(3):183–193.
  • Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006a;34(19):5491–5497.
  • Makałowski W, Mitchell GA, Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994;10(6):188–193.
  • Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12(7):1060–1067.
  • Yulug IG, Yulug A, Fisher EMC. The frequency and position of Alu repeats in cDNAs, as determined by database searching. Genomics. 1995;27(3):544–548.
  • Conti A, Carnevali D, Bollati V, et al. Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data. Nucleic Acids Res. 2015;43(2):817–835.
  • Sakharkar MK, Chow VTK, Kangueane P. Distributions of exons and introns in the human genome. In Silico Biol. 2004;4:387–393.
  • Möller-Krull M, Zemann A, Roos C, et al. Beyond DNA: RNA editing and steps toward alu exonization in primates. J Mol Biol. 2008;382(3):601–609.
  • Tajnik M, Vigilante A, Braun S, et al. Intergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Res. 2015;43:10492–10505.
  • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–1415.
  • Knebelmann B, Forestier L, Drouot L, et al. Splice-mediated insertion of anAlu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet. 1995;4(4):675–679.
  • Jourdy Y, Janin A, Fretigny M, et al. Reccurrent F8 intronic deletion found in mild hemophilia a causes alu exonization. Am J Hum Genet. 2018;102(2):199–206.
  • Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17(2):83–96.
  • Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–376.
  • Paz N, Levanon EY, Amariglio N, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17(11):1586–1595.
  • Stasenko M, Cybulska P, Feit N, et al. Brain metastasis in epithelial ovarian cancer by BRCA1/2 mutation status. Gynecol Oncol. 2019;154(1):144–149.
  • Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–593.
  • Gu TJ, Yi X, Zhao XW, et al. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics. 2009;10(1):563.
  • Bortolin-Cavaille ML, Dance M, Weber M, et al. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 2009;37(10):3464–3473.
  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–1101.
  • Zhang Y, Sun M, Chen Y, et al. MiR-519b-3p inhibits the proliferation and invasion in colorectal cancer via modulating the uMtCK/Wnt signaling pathway. Front Pharmacol. 2019b;10:1–9.
  • Welden JR, Stamm S. Pre-mRNA structures forming circular RNAs. Biochim Biophys Acta - Gene Regul Mech. 2019;1862(11–12):194410.
  • Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–2247.
  • Hu D, Zhang Y. Circular RNA HIPK3 promotes glioma progression by binding to miR-124-3p. Gene. 2019;690:81–89.
  • Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 2017;136(17):1629–1642.
  • Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174.
  • Mayr C. Regulation by 3ʹ-untranslated regions. Annu Rev Genet. 2017;51(1):171–194.
  • Quann K, Jing Y, Rigoutsos I. Post-transcriptional regulation of BRCA1 through its coding sequence by the miR-15/107 group of miRNAs. Front Genet. 2015;6:242.
  • Lin L, Jiang P, Park JW, et al. The contribution of Alu exons to the human proteome. Genome Biol. 2016;17. 10.1186/s13059-016-0876-5.
  • Thompson ME, Jensen RA, Obermiller PS, et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet. 1995;9(4):444–450.
  • Sobczak K, Krzyzosiak WJ. Structural determinants of BRCA1 translational regulation. J Biol Chem. 2002;277(19):17349–17358.
  • Oberley LW. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother. 2005;59(4):143–148.
  • Stuart JJ, Egry LA, Wong GH, et al. The 3ʹ UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem Biophys Res Commun. 2000;274(3):641–648.
  • Lazzari E, Mondala PK, Santos ND, et al. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat Commun. 2017;8(1):1922.
  • Tan S, Li H, Zhang W, et al. NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene. 2018;37(35):4887–4900.
  • Capshew CR, Dusenbury KL, Hundley HA. Inverted alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res. 2012;40(17):8637–8645.
  • Chen LL, DeCerbo JN, Carmichael GG. Alu element-mediated gene silencing. EMBO J. 2008;27(12):1694–1705.
  • Park E, Maquat LE. Staufen-mediated mRNA decay. Wiley Interdiscip Rev RNA. 2013;4(4):423–435.
  • Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3ʹ UTRs via alu elements. Nature. 2011;470(7333):284–290.
  • Silwal-Pandit L, Langerød A, Børresen-Dale AL. TP53 mutations in breast and ovarian cancer. Cold Spring Harb Perspect Med. 2017;7(1):a026252.
  • Daskalova E, Baev V, Rusinov V, et al. 3ʹUTR-located ALU Elements: donors of Potetial miRNA target sites and mediators of network miRNA-based regulatory Interactions. Evol Bioinf. 2006;2:103–120.
  • Lehnert S, Van Loo P, Thilakarathne PJ, et al. Evidence for co-evolution between human microRNAs and alu-repeats. PLoS One. 2009;4(2):e4456.
  • Hoffman Y, Bublik DR, Pilpel Y, et al. miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ. 2014;21(2):302–309.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283.
  • Bhattacharya A, Jha V, Singhal K, et al. Multiple Alu exonization in 3ʹUTR of a primate specific isoform of CYP20A1 creates a potential miRNA sponge. Genome Biol Evol. 2021;13:evaa233.
  • Du W, Li D, Guo X, et al. Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC. Artif Cells Nanomedicine Biotechnol. 2019;47(1):4120–4130.
  • Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19(10):621–637.
  • Marshall L, White RJ. Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer. 2008;8(12):911–915.
  • Häsler J, Strub K. Alu RNP and alu RNA regulate translation initiation in vitro. Nucleic Acids Res. 2006b;34(8):2374–2385.
  • Martinez-Gomez L, Abascal F, Jungreis I, et al. Few SINEs of life: alu elements have little evidence for biological relevance despite elevated translation. NAR Genomics Bioinf. 2020;2(1):1–12.
  • Tiedge H, Chen W, Brosius J. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci. 1993;13(6):2382–2390.
  • Booy EP, McRae EKS, Koul A, et al. The long non-coding RNA BC200 (BCYRN1) is critical for cancer cell survival and proliferation. Mol Cancer. 2017;16(1):109.
  • Booy EP, McRae EKS, Ezzati P, et al. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res. 2018;46(21):11575–11591.
  • Booy EP, Gussakovsky D, Choi T, et al. The noncoding RNA BC200 associates with polysomes to positively regulate mRNA translation in tumor cells. J Biol Chem. 2021;296:100036.
  • Walter P, Johnson AE. Signal sequence recognition and protein targeting. Annu Rev Cell Biol. 1994;10(1):87–119.
  • Nozu K, Iijima K, Ohysuka Y, et al. Alport syndrome caused by a COL4A5 deletion and exonization of an adjacent AluY. Mol Genet Genomic Med. 2014;2(5):451–453.
  • Pastor T, Talotti G, Lewandowska MA, et al. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res. 2009;37(21):7258–7267.
  • Rome C, Loiseau H, Arsaut J, et al. Diversity of Contactin mRNA in Human Brain Tumors. Mol Carcinog. 2006;45(10):774–785.
  • Haupt S, Vijayakumaran R, Miranda PJ, et al. The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol. 2017;9(1):53–61.
  • Schollen E, Keldermans L, Foulquier F, et al. Characterization of two unusual truncating PMM2 mutations in two CDG-Ia patients. Mol Genet Metab. 2007;90(4):408–413.
  • Ferlini A, Galié N, Merlini L, et al. A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy. Am J Hum Genet. 1998;63(2):436–446.
  • Shen S, Lin L, Cai JJ, et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci U S A. 2011;108(7):2837–2842.
  • Yang C, Zheng J, Liu X, et al. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. Mol Ther Nucleic Acids. 2020;20:866–878.
  • Mitchell GA, Labuda D, Fontaine G, et al. Splice-mediated insertion of an Alu sequence inactivates ornithine aminotransferase: A role for Alu elements in human mutation. Proc Natl Acad Sci U S A. 1991;88(3):815–819.
  • Tomuschat C, O'Donnell AM, Coyle D, et al. NOS-interacting protein (NOSIP) is increased in the colon of patients with Hirschsprungs's disease. J Pediatr Surg. 2017;52(5):772–777.
  • Larsen PA, Lutz MW, Hunnicutt KE, et al. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement. 2017;13(7):828–838.
  • Pagliarini V, Jolly A, Bielli P, et al. Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res. 2020;48(2):633–645
  • Mameli E, Lepori MB, Chiappe F, et al. Wilson's disease caused by alternative splicing and Alu exonization due to a homozygous 3039-bp deletion spanning from intron 1 to exon 2 of the ATP7B gene. Gene. 2015;569(2):276–279
  • Kent WJ, Sugnet CW, Furey TS, et al. The Human Genome Browser at UCSC. Genome Res. 2002;12(6):996–1006.
  • Kaneko H, Dridi S, Tarallo V, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature. 2011;471(7338):325–332.
  • Di Ruocco F, Basso V, Rivoire M, et al. Alu RNA accumulation induces epithelial-to-mesenchymal transition by modulating miR-566 and is associated with cancer progression. Oncogene. 2018;37(5):627–637.
  • Liu WM, Chu WM, Choudary PV, et al. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 1995;23(10):1758–1765.
  • Jang KL, Latchman DS. HSV infection induces increased transcription of alu repeated sequences by RNA polymerase III. FEBS Lett. 1989;258(2):255–258.
  • Panning B, Smiley JR. Activation of RNA polymerase iii transcription of human alu elements by herpes simplex virus. Virology. 1994;202(1):408–417.
  • Wang W, Wang WH, Azadzoi KM, et al. Alu RNA accumulation in hyperglycemia augments oxidative stress and impairs eNOS and SOD2 expression in endothelial cells. Mol Cell Endocrinol. 2016;426:91–100.
  • Shiromoto Y, Sakurai M, Qu H, et al. Processing of alu small RNAs by DICER/ADAR1 complexes and their RNAi targets. RNA. 2020;26(12):1801–1814.
  • Luo Y, Lu X, Xie H. Dynamic alu methylation during normal development, aging, and tumorigenesis. BioMed Res Int. 2014;(2014:784706.
  • Petersen M, Wengel J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003;21(2):74–81.
  • Crooke ST, Witztum JL, Bennett CF, et al. RNA-targeted therapeutics. Cell Metab. 2018;27(4):714–739.
  • Castelnuovo M, Massone S, Tasso R, et al. An alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J. 2010;24(10):4033–4046.
  • Gigoni A, Costa D, Gaetani M, et al. Down-regulation of 21A alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells. Cell Cycle. 2016;15(18):2420–2430.
  • Quentin Y. Emergence of master sequences in families of retroposons derived from 7sl RNA. Genetica. 1994;93(1–3):203–215.
  • Brasil S, Viecelli HM, Meili D, et al. Pseudoexon exclusion by antisense therapy in 6-pyruvoyl-tetrahydropterin synthase deficiency. Hum Mutat. 2011;32(9):1019–1027.
  • Bonnefoy S, Watson CM, Kernohan KD, et al. Biallelic Mutations in LRRC56, Encoding a Protein Associated with Intraflagellar Transport, Cause Mucociliary Clearance and Laterality Defects. Am J Hum Genet. 2018;103(5):727–739.
  • Kim JS, Chang JW, Park JK, et al. Increased aldehyde reductase expression mediates acquired radioresistance of laryngeal cancer cells via modulating p53. Cancer Biol Ther. 2012;13(8):638–646.
  • Saraei R, Soleimani M, Akbari AAM, et al. The role of XIAP in resistance to TNF-related apoptosis-inducing ligand (TRAIL) in Leukemia. Biomed Pharmacother. 2018;107:1010–1019.
  • Hiraide T, Nakashima M, Ikeda T, et al. Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. J Hum Genet. 2020;65(10):921–925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.