1,609
Views
2
CrossRef citations to date
0
Altmetric
Review

Up–to–date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?

, , ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 586-599 | Received 30 Jun 2021, Accepted 31 Oct 2021, Published online: 29 Nov 2021

References

  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018 Jan 4;46(D1):D303–d307.
  • Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020 Mar;52(3):400–408.
  • Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014 May;15(5):313–326.
  • Abdelhamid RF, Plessy C, Yamauchi Y, et al. Multiplicity of 5ʹ cap structures present on short RNAs. PloS One. 2014;9(7):e102895.
  • Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015 Mar 26;519(7544):482–485.
  • Wu R, Jiang D, Wang Y, et al. N (6)-Methyladenosine (m(6)A) Methylation in mRNA with A dynamic and reversible epigenetic modification. Mol Biotechnol. 2016 Jul;58(7):450–459.
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017 Jun 15;169(7):1187–1200.
  • Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018 Dec 13;175(7):1872–1886.e24.
  • Wei C, Gershowitz A, Moss B. N6, O2ʹ-dimethyladenosine a novel methylated ribonucleoside next to the 5ʹ terminal of animal cell and virus mRNAs. Nature. 1975 Sep 18;257(5523):251–253.
  • Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res. 1999 Aug 1;27(15):3138–3145.
  • Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3ʹ-end uridylation activity in Arabidopsis. Curr Biol. 2005 Aug 23;15(16):1501–1507.
  • Heo I, Joo C, Kim YK, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009 Aug 21;138(4):696–708.
  • Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015 Mar 5;16(3):289–301.
  • Brown JA, Kinzig CG, DeGregorio SJ, et al. Methyltransferase-like protein 16 binds the 3ʹ-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci U S A. 2016 Dec 6 113(49):14013–14018.
  • Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Mol Cell. 2019 Jun;20;74(6):1278–1290.e9.
  • Carissimi C, Laudadio I, Lorefice E, et al. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol. 2021 Jun;7:1–10.
  • Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014 Dec;24(12):1403–1419.
  • Torsin LI, Petrescu GED, Sabo AA, et al. Editing and chemical modifications on Non-Coding RNAs in Cancer: a new tale with clinical significance. Int J Mol Sci. 2021 Jan 8;22:2.
  • Tk D, Xhemalçe B. Deciphering RNA modifications at base resolution: from chemistry to biology. Brief Funct Genomics. 2021 Mar 27;20(2):77–85.
  • Dávalos A, Pinilla L, M-c LDLH, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021 2021/08/01/;73:19–29.
  • Mantilla-Escalante DC, López de Las Hazas MC, Crespo MC, et al. Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs. Eur J Nutr. 2021 May 23;60(8):4279–4293.
  • López de Las Hazas MC, Gil-Zamorano J, Cofán M, et al. One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr. 2021 Jun;60(4):1999–2011.
  • Lu N, Li X, Yu J, et al. Curcumin Attenuates Lipopolysaccharide-Induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids. 2018 Jan;53(1):53–63.
  • Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol. 2015 Apr;32:207–215.
  • Meyer KD, Jaffrey SR. Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017 Oct 6;33:319–342.
  • Karthiya R, Khandelia P. m6A RNA methylation: ramifications for gene expression and human health. Mol Biotechnol. 2020 Oct;62(10):467–484.
  • Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020 Feb 28;19(1):44.
  • Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014 Jan 2;505(7481):117–120.
  • Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017 Mar;27(3):315–328.
  • Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018 Mar;20(3):285–295.
  • Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015 Jun 4;161(6):1388–1399.
  • Li A, Ys C, Xl P, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017 Mar;27(3):444–447.
  • Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 2016 Feb 18;61(4):507–519.
  • Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6)A Methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017 May 18;169(5):824–835.e14.
  • Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015 Feb 26;518(7540):560–564.
  • Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017 Jun 2;45(10):6051–6063.
  • Kumar S, Mohapatra T. Deciphering Epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol. 2021;9:628415.
  • Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018 Mar 15;69(6):1028–1038.e6.
  • Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016 Jul 21;63(2):306–317.
  • Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019 Oct;20(10):608–624.
  • Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016 Sep 15;537(7620):369–373.
  • Nance DJ, Satterwhite ER, Bhaskar B, et al. Characterization of METTL16 as a cytoplasmic RNA binding protein. PloS One. 2020;15(1):e0227647.
  • Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 Is a Mediator of m(6) A-dependent nuclear RNA processing events. Cell. 2015 Sep 10;162(6):1299–1308.
  • Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017 May;27(5):606–625.
  • Scutenaire J, Deragon JM, Jean V, et al. The YTH domain protein ECT2 Is an m(6)A reader required for normal trichome branching in arabidopsis. Plant Cell. 2018 May;30(5):986–1005.
  • Wei LH, Song P, Wang Y, et al. The m(6)A Reader ECT2 controls trichome morphology by affecting mRNA stability in arabidopsis. Plant Cell. 2018 May;30(5):968–985.
  • Xu C, Liu K, Ahmed H, et al. Structural basis for the discriminative recognition of N6-Methyladenosine RNA by the human YT521-B homology domain family of proteins. J Biol Chem. 2015 Oct 9;290(41):24902–24913.
  • Theler D, Dominguez C, Blatter M, et al. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res. 2014 Dec 16;42(22):13911–13919.
  • Liao S, Sun H, Xu C, et al. A Family of N(6)-methyladenosine (m(6)A) Readers. Genomics Proteomics Bioinformatics. 2018 Apr;16(2):99–107.
  • Meyer KD, Patil DP, Zhou J, et al. 5ʹ UTR m(6)A Promotes Cap-Independent Translation. Cell. 2015 Nov5;163(4):999–1010.
  • Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6) A-containingRNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016 Aug 25;7(1):12626.
  • Hartmann AM, Nayler O, Schwaiger FW, et al. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol Biol Cell. 1999 Nov;10(11):3909–3926.
  • Wojtas MN, Pandey RR, Mendel M, et al. Regulation of m(6)A Transcripts by the 3ʹ→5ʹ RNA Helicase YTHDC2 Is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017 Oct 19;68(2):374–387.e12.
  • Roundtree IA, He C. Nuclear m(6)A Reader YTHDC1 regulates mRNA splicing. Trends Genet. 2016 Jun;32(6):320–321.
  • Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the Transcriptome: m(6) A-BindingProteins. Trends Cell Biol. 2018 Feb;28(2):113–127.
  • Mao Y, Dong L, Liu XM, et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 2019 Nov25;10(1):5332.
  • Zhang F, Kang Y, Wang M, et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum Mol Genet. 2018 Nov15;27(22):3936–3950.
  • Zhou KI, Parisien M, Dai Q, et al. N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol. 2016 Feb 27;428(5):822–833.
  • Liang Z, Riaz A, Chachar S, et al. Epigenetic modifications of mRNA and DNA in Plants. Mol Plant. 2020 Jan 6;13(1):14–30.
  • Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016 Sep 19;44(16):7511–7526.
  • Topisirovic I, Svitkin YV, Sonenberg N, et al. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011 Mar-Apr;2(2):277–298.
  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016 Feb 25;530(7591):441–446.
  • Li X, Xiong X, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016 May;12(5):311–316.
  • Liu F, Clark W, Luo G, et al. ALKBH1-Mediated tRNA demethylation regulates translation. Cell. 2016 Oct 20;167(3):816–828.e16.
  • Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016 Dec 29;14(1):23–31.
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015 Aug;12(8):767–772.
  • Boulias K, Toczydłowska-Socha D, Hawley BR, et al. Identification of the m(6)Am methyltransferase PCIF1 Reveals the Location and Functions of m(6)Am in the Transcriptome. Mol Cell. 2019 Aug 8;75(3):631–643.e8.
  • Sendinc E, Valle-Garcia D, Dhall A, et al. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression. Mol Cell. 2019 Aug 8;75(3):620–630.e9.
  • Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications. Wiley Interdiscip Rev RNA. 2020 Jul;11(4):e1586.
  • Squires JE, Patel HR, Nousch M, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012 Jun;40(11):5023–5033.
  • Amort T, Rieder D, Wille A, et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 2017 Jan 5;18(1):1.
  • Huang T, Chen W, Liu J, et al. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat Struct Mol Biol. 2019 May;26(5):380–388.
  • Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m5C) RNA Methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel). 2019 Jan 30;10:2.
  • Selmi T, Hussain S, Dietmann S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 2021 Jan 25;49(2):1006–1022.
  • Menezes MR, Balzeau J, Hagan JP. 3ʹ RNA uridylation in epitranscriptomics, gene regulation, and disease. Front Mol Biosci. 2018;5:61.
  • Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol. 2014;11(12):1540–1554.
  • Carlile TM, Rojas-Duran MF, Gilbert WV. Pseudo-Seq: genome-wide detection of pseudouridine modifications in RNA. Methods Enzymol. 2015;560:219–245.
  • Schwartz S, Bernstein DA, Mumbach MR, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014 Sep 25;159(1):148–162.
  • Li X, Zhu P, Ma S, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015 Aug;11(8):592–597.
  • Eukaryotic KM. RNA 5ʹ-End NAD(+) Capping and DeNADding. Trends Cell Biol. 2018 Jun;28(6):454–464.
  • Peng X, Xu X, Wang Y, et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell. 2018 May 14;33(5):817–828.e7.
  • Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease. Nat Rev Nephrol. 2019 Jun;15(6):346–366.
  • Okada N, Shindo-Okada N, Nishimura S. Isolation of mammalian tRNAAsp and tRNATyr by lectin-Sepharose affinity column chromatography. Nucleic Acids Res. 1977 Feb;4(2):415–423.
  • Flynn RA, Pedram K, Malaker SA, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021 Jun 10;184(12):3109–3124.e22.
  • Anderson SJ, Kramer MC, Gosai SJ, et al. N(6)-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Rep. 2018 Oct 30;25(5):1146–1157.e3.
  • Zhang F, Zhang YC, Liao JY, et al. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet. 2019 May;15(5):e1008120.
  • Cui X, Liang Z, Shen L, et al. 5-Methylcytosine RNA methylation in Arabidopsis thaliana. Mol Plant. 2017 Nov6;10(11):1387–1399.
  • David R, Burgess A, Parker B, et al. Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs. Plant Cell. 2017 Mar;29(3):445–460.
  • Zhong S, Li H, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 2008 May;20(5):1278–1288.
  • Shen L, Liang Z, Gu X, et al. N(6)-Methyladenosine RNA modification regulates shoot stem cell fate in arabidopsis. Dev Cell. 2016 Jul 25;38(2):186–200.
  • Shen L, Liang Z, Yu H. Dot blot analysis of N6-methyladenosine RNA modification levels. Bio-protocol. 2017;7(1):e2095. 2017/01/05.
  • Rajecka V, Skalicky T, Vanacova S. The role of RNA adenosine demethylases in the control of gene expression. BBA Gene Regul Mech. 2019 Mar;1862(3):343–355.
  • Liang Z, Geng Y, and Ji C, et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of streptophyta. Adv Sci. 2020;71:1901850.
  • Růžička K, Zhang M, Campilho A, et al. Identification of factors required for m(6) A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 2017 Jul;215(1):157–172.
  • Duan HC, Wei LH, Zhang C, et al. ALKBH10B Is an RNA N(6)-Methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell. 2017 Dec;29(12):2995–3011.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281–297.
  • Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019 Jan;20(1):21–37.
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233.
  • Broughton JP, Lovci MT, Huang JL, et al. Pairing beyond the Seed Supports MicroRNA targeting specificity. Mol Cell. 2016 Oct 20;64(2):320–333.
  • Makarova JA, Shkurnikov MU, Wicklein D, et al. Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem. 2016 Nov;51(3–4):33–49.
  • Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019 Feb;76(3):441–451.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017 Mar;16(3):203–222.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3ʹ UTRs and near stop codons. Cell. 2012 Jun 22;149(7):1635–1646.
  • Han J, Wang JZ, Yang X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019 Jun 22;18(1):110.
  • Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019 Sep 6;38(1):393.
  • Wang H, Deng Q, Lv Z, et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019 Dec 10;18(1):181.
  • Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019 Apr 23;10(1):1858.
  • Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017 Feb;65(2):529–543.
  • Wang J, Ishfaq M, Xu L, et al. METTL3/m(6)A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating keap1/Nrf2 pathway. Front Pharmacol. 2019;10:517.
  • Yan G, Yuan Y, He M, et al. m(6)A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. Mol Ther Nucleic Acids. 2020 Mar 6;19:421–436.
  • Konno M, Koseki J, Asai A, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun. 2019 Aug 29;10(1):3888.
  • Mi B, Xiong Y, Yan C, et al. Methyltransferase-like 3-mediated N6-methyladenosine modification of miR-7212-5p drives osteoblast differentiation and fracture healing. J Cell Mol Med. 2020 Jun;24(11):6385–6396.
  • Yang Z, Li J, Feng G, et al. MicroRNA-145 Modulates N(6)-Methyladenosine Levels by Targeting the 3ʹ-Untranslated mRNA Region of the N(6)-Methyladenosine Binding YTH Domain Family 2 Protein. J Biol Chem. 2017 Mar 3;292(9):3614–3623.
  • Cui X, Wang Z, Li J, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway. Cell Prolif. 2020 Mar;53(3):e12768.
  • Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018 Feb 28;415:11–19.
  • Gutschner T, Hämmerle M, Diederichs S. MALAT1 – a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013 Jul;91(7):791–801.
  • Li X, Xiong X, Zhang M, et al. Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell. 2017 Dec 7;68(5):993–1005.e9.
  • Cheray M, Etcheverry A, Jacques C, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020 Feb 25;19(1):36.
  • Zhu DQ, Lou YF, He ZG, et al. Nucleotidyl transferase TUT1 inhibits lipogenesis in osteosarcoma cells through regulation of microRNA-24 and microRNA-29a. Tumour Biol. 2014 Dec;35(12):11829–11835.
  • Thornton JE, Chang HM, Piskounova E, et al. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA. 2012 Oct;18(10):1875–1885.
  • Alajez NM, Shi W, Wong D, et al. Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway. Oncotarget. 2012 Dec;3(12):1641–1652.
  • Cai WY, Wei TZ, Luo QC, et al. The Wnt-β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013 Jul 1;126(Pt 13):2877–2889.
  • Ustianenko D, Hrossova D, Potesil D, et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA. 2013 Dec;19(12):1632–1638.
  • Hunter RW, Liu Y, Manjunath H, et al. Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells. Genes Dev. 2018 Jul 1;32(13–14):903–908.
  • Song J, Zhuang Y, Zhu C, et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020 Feb;16(2):160–169.
  • Xhemalce B, Robson SC, Human KT. RNA methyltransferase BCDIN3D regulates microRNA processing. Cell. 2012 Oct 12;151(2):278–288.
  • Jiao X, Doamekpor SK, Bird JG, et al. 5ʹ End nicotinamide adenine dinucleotide cap in human cells promotes RNA Decay through DXO-Mediated deNADding. Cell. 2017 Mar 9;168(6):1015–1027.e10.
  • Walters RW, Matheny T, Mizoue LS, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2017 Jan 17 114(3):480–485.
  • Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. 2019;10:360.
  • Zhao Y, Yu Y, Zhai J, et al. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr Biol. 2012 Apr 24;22(8):689–694.
  • Wang X, Zhang S, Dou Y, et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3ʹ tailing of small RNAs in Arabidopsis. PLoS Genet. 2015 Apr;11(4):e1005091.
  • Tu B, Liu L, Xu C, et al. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet. 2015 Apr;11(4):e1005119.
  • Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science (New York, NY). 2008 Sep 12;321(5895):1490–1492.
  • Yu Y, Ji L, Le BH, et al. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol. 2017 Feb;15(2):e2001272.
  • Ibrahim F, Rymarquis LA, Kim EJ, et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A. 2010 Feb 23 107(8):3906–3911.
  • Liang H, Jiao Z, Rong W, et al. 3ʹ-Terminal 2ʹ-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020 Jul 27;48(13):7027–7040.
  • Yang A, Bofill-De Ros X, Shao TJ, et al. 3ʹ uridylation confers miRNAs with non-canonical target repertoires. Mol Cell. 2019 Aug 8;75(3):511–522.e4.
  • Zeng J, Gupta VK, Jiang Y, et al. Cross-kingdom small RNAs among animals, plants and microbes. Cells. 2019 Apr 23;8(4):371.
  • Baier SR, Nguyen C, Xie F, et al. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers [Article]. J Nutr. 2014;144(10):1495–1500.
  • Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012 Jan;22(1):107–126.
  • Dávalos A, Henriques R, and Latasa MJ, et al. Literature review of baseline information on non-coding RNA (ncRNA) to support the risk assessment of ncRNA-based genetically modified plants for food and feed.EFSA supporting publication . 2019;16(8):1688E.
  • Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, et al. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. Br J Pharmacol. 2021 Jun;178(11):2218–2245.
  • Tomé-Carneiro J, Fernández-Alonso N, Tomás-Zapico C, et al. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacol Res. 2018;132:21–32.
  • Samad AFA, Kamaroddin MF, Cross-Kingdom SM. Regulation by plant microRNAs provides novel insight into gene regulation. Advances in Nutrition (Bethesda, Md). 2021 Feb 1;12(1):197–211.
  • Yang J, Elbaz-Younes I, Primo C, et al. Intestinal permeability, digestive stability and oral bioavailability of dietary small RNAs. Sci Rep. 2018 Jul 6;8(1):10253.
  • Wang X, Ren X, Ning L, et al. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects. J Nutr Biochem. 2020 Jul;81:108376.
  • Luo Y, Wang P, Wang X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep. 2017 Apr 5;7(1):645.
  • Jung M, Schaefer A, Steiner I, et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010 Jun;56(6):998–1006.
  • Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015 Jan;25(1):39–49.
  • Huang H, Cd D, Wang TTY. Extensive degradation and low bioavailability of orally consumed corn miRNAs in mice. Nutrients. 2018 Feb 15;10(2):215.
  • Dickinson B, Zhang Y, Petrick JS, et al. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol. 2013 Nov;31(11):965–967.
  • Howard KM, Jati Kusuma R, Baier SR, et al. Loss of miRNAs during processing and storage of cow’s (Bos Taurus) milk. J Agric Food Chem. 2015 Jan 21;63(2):588–592.
  • Micó V, Martín R, Lasunción MA, et al. Unsuccessful detection of plant microRNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods Hum Nutr. 2016 Mar;71(1):102–108.
  • Dickinson B, Zhang Y, Petrick J S, Heck G, Ivashuta S and Marshall W S. (2013). Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol, 31(11), 965–967. 10.1038/nbt.2737
  • Title A C, Denzler R and Stoffel M. (2015). Uptake and Function Studies of Maternal Milk-derived MicroRNAs. Journal of Biological Chemistry, 290(39), 23680–23691. 10.1074/jbc.M115.676734
  • Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021 Mar;31(3):247–258.
  • Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods. 2012 Jul 1;9(8):840–846.
  • Seitz H. Redefining microRNA targets. Curr Biol. 2009 May 26;19(10):870–873.
  • Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol. 2007 Dec;25(12):1457–1467.
  • Park JH, Shin SY, Shin C. Non-canonical targets destabilize microRNAs in human Argonautes. Nucleic Acids Res. 2017 Feb 28;45(4):1569–1583.
  • Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018 Feb 19;46(1):11–21.
  • Shah MY, Ferrajoli A, Sood AK, et al. microRNA therapeutics in cancer - an emerging concept. EBioMedicine. 2016 Oct;12:34–42.
  • Jones MR, Quinton LJ, Blahna MT, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009 Sep;11(9):1157–1163.
  • Adachi H, Hengesbach M, Yu YT, et al. From antisense RNA to RNA modification: therapeutic potential of RNA-Based technologies. Biomedicines. 2021 May 14;9(5):550.
  • Zha X, Xi X, Fan X, et al. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY). 2020 May 4;12(9):8137–8150.
  • Zhu Y, Pan X, Du N, et al. ASIC1a regulates miR-350/SPRY2 by N(6) -methyladenosine to promote liver fibrosis. FASEB J. 2020 Nov;34(11):14371–14388.
  • Chen J, Wang H, Yang X, et al. Consumption of miRNA-mediated insect-resistant transgenic rice pollen does not harm Apis mellifera adults. J Agric Food Chem. 2021 Apr 14;69(14):4234–4242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.