857
Views
31
CrossRef citations to date
0
Altmetric
Articles

Fusing lidar and digital aerial photography for object-based forest mapping in the Florida Everglades

, &
Pages 562-573 | Received 04 Feb 2013, Accepted 15 Aug 2013, Published online: 25 Sep 2013

References

  • Asner , G. P., , D. E. , Knapp, , T. , Kennedy-Bowdoin, , M. O. , Jones, , R. E. , Martin, , J. , Boardman, and R. F. , Hughes . 2008 . Invasive Species Detection in Hawaiian Rainforests Using Airborne Imaging Spectroscopy and LiDAR . Remote Sensing of Environment , 112 : 1942 – 1955 .
  • Benz , U. , Hofmann , P. , Willhauck , G. , Lingenfelder , I. and Heynen , M. 2004 . Multiresolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information . ISPRS Journal of Photogrammetry and Remote Sensing , 58 : 239 – 258 .
  • Breiman , L. 2001 . Random Forests . Machine Learning , 45 : 5 – 32 .
  • CERP (Comprehensive Everglades Restoration Plan). 2012. “About CERP: Brief Overview.” http://www.evergladesplan.org/ (http://www.evergladesplan.org/) (Accessed: 27 November ).
  • Chan , J. C.-W. and Paelinckx , D. 2008 . Evaluation of Random Forest and Adaboost Tree Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery . Remote Sensing of Environment , 112 : 2999 – 3011 .
  • Cho , M. A. , R. , Mathieu, , G. P. , Asner, , L. , Naidoo, , J. , van Aardt, , A. , Ramoelo, , P. , Debba, , K. , Wessels, , R. , Main, , I. P. J. , Smit, and B. , Erasmus . 2012 . Mapping Tree Species Composition in South African Savannas Using an Integrated Airborne Spectral and LiDAR System . Remote Sensing of Environment , 125 : 214 – 226 .
  • Congalton , R. and Mead , R. A. 1983 . A Quantitative Method to Test for Consistency and Correctness in Photointerpretation . Photogrammetric Engineering and Remote Sensing , 49 : 69 – 74 .
  • Dalponte , M. , Bruzzone , L. and Gianelle , D. 2008 . Fusion of Hyperspectral and LiDAR Remote Sensing Data for Classification of Complex Forest Areas . IEEE Transactions on Geoscience and Remote Sensing , 46 : 1416 – 1427 .
  • Davis , S. M. , Gunderson , L. H. , Park , W. A. , Richardson , J. R. and Mattson , J. E. 1994 . “ Landscape Dimension, Composition, and Function in a Changing Everglades Ecosystem ” . In Everglades: The Ecosystem and Its Restoration , Edited by: Davis , S. M. and Ogden , J. C. 419 – 444 . Delray Beach , FL : St Lucie Press .
  • Doren , R. F. , Rutchey , K. and Welch , R. 1999 . The Everglades: A Perspective on the Requirements and Applications for Vegetation Map and Database Products . Photogrammetric Engineering and Remote Sensing , 65 : 155 – 161 .
  • Foody , G. M. 2002 . Status of Land Cover Classification Accuracy Assessment . Remote Sensing of Environment , 80 : 185 – 201 .
  • Foody , G. M. 2004 . Thematic Map Comparison, Evaluating the Statistical Significance of Differences in Classification Accuracy . Photogrammetric Engineering and Remote Sensing , 70 : 627 – 633 .
  • Gislason , P. O. , Benediktsson , J. A. and Sveinsson , J. R. 2006 . Random Forests for Land Cover Classification . Pattern Recognition Letters , 27 : 294 – 300 .
  • Hall , M. , Frank , E. , Holmes , G. , Pfahringer , B. , Reutmann , P. and Witten , I. 2009 . The WEKA Data Mining Software, an Update . SIGKDD Explorations , 11 : 1 – 18 .
  • Hantson , W. , Kooistra , L. and Slim , P. A. 2012 . Mapping Invasive Woody Species in Coastal Dunes in the Netherlands: A Remote Sensing Approach Using LiDAR and High-Resolution Aerial Photographs . Applied Vegetation Science , 15 : 536 – 547 .
  • Harken , J. and Sugumaran , R. 2005 . Classification of Iowa Wetlands Using an Airborne Hyperspectral Image: A Comparison of the Spectral Angle Mapper Classifier and an Object-Oriented Approach . Canadian Journal of Remote Sensing , 31 : 167 – 174 .
  • Hill , R. A. and Thomson , A. G. 2005 . Mapping Woodland Species Composition and Structure Using Airborne Spectral and LIDAR Data . International Journal of Remote Sensing , 26 : 3763 – 3779 .
  • Hirano , A. , Madden , M. and Welch , R. 2003 . Hyperspectral Image Data for Mapping Wetland Vegetation . Wetlands , 23 : 436 – 448 .
  • Hodgson , M. E. and Bresnahan , P. 2004 . Accuracy of Airborne LiDAR-Derived Elevation: Empirical Assessment and Error Budget . Photogrammetric Engineering and Remote Sensing , 70 : 331 – 339 .
  • Holmgren , J. , Persson , A. and Soderman , U. 2008 . Species Identification of Individual Trees by Combining High Resolution LiDAR Data with Multi-Spectral Images . International Journal of Remote Sensing , 29 : 1537 – 1552 .
  • Jensen , J. , Rutchey , K. , Koch , M. and Narumalani , S. 1995 . Inland Wetland Change Detection in the Everglades Water Conservation Area 2a Using a Time Series of Normalized Remotely Sensed Data . Journal of Photogrammetric Engineering and Remote Sensing , 61 : 199 – 209 .
  • Johnson , B. and Xie , Z. 2011 . Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach . ISPRS Journal of Photogrammetry and Remote Sensing , 66 : 473 – 483 .
  • Jones , T. G. , Coops , N. C. and Sharma , T. 2010 . Assessing the Utility of Airborne Hyperspectral and LiDAR Data for Species Distribution Mapping in the Coastal Pacific Northwest, Canada . Remote Sensing of Environment , 114 : 2841 – 2852 .
  • Kamal , M. and Phinn , S. 2011 . Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach . Remote Sensing , 3 : 2222 – 2242 .
  • Ke , Y. , Quackenbush , L. J. and Im , J. 2010 . Synergistic Use of QuickBird Multispectral Imagery and LiDAR Data for Object-Based Forest Species Classification . Remote Sensing of Environment , 114 : 1141 – 1154 .
  • Korpela , I. , rka , H. O. , Maltamo , M. , Tokola , T. and Hyyppä , J. 2010 . Tree Species Classification Using Airborne LiDAR – Effects of Stand and Tree Parameters, Downsizing of Training Set, Intensity Normalization, and Sensor Type . Silva Fennica , 44 : 319 – 339 .
  • Leckie , D. , Gougeon , F. , Hill , D. , Quinn , R. , Armstrong , L. and Shreenan , R. 2003 . Combined High Density LiDAR and Multispectral Imagery for Individual Tree Crown Analysis . Canadian Journal of Remote Sensing , 29 : 633 – 649 .
  • Lim , K. , Treitz , P. , Baldwin , K. , Morrison , I. and Green , J. 2003 . LiDAR Remote Sensing of Biophysical Properties of Tolerant Northern Hardwood Forests . Canadian Journal of Remote Sensing , 29 : 658 – 678 .
  • Liu , D. and Xia , M. 2010 . Assessing Object-Based Classification, Advantages and Limitations . Remote Sensing Letters , 1 : 187 – 194 .
  • Moffiet , T. , Mengersen , K. , Witte , C. , King , R. and Denham , R. 2005 . Airborne Laser Scanning: Exploratory Data Analysis Indicates Potential Variables for Classification of Individual Trees or Forest Stands According To Species . ISPRS Journal of Photogrammetry and Remote Sensing , 59 : 289 – 309 .
  • Rodriguez-Galiano , V. F. , Ghimire , B. , Rogan , J. , Chica-Olmo , M. and Rigol-Sanchez , J. P. 2012 . An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification . ISPRS Journal of Photogrammetry and Remote Sensing , 67 : 93 – 104 .
  • Rutchey , K. , Schall , T. and Sklar , F. 2008 . Development of Vegetation Maps for Assessing Everglades Restoration Progress . Wetlands , 28 : 806 – 816 .
  • Rutchey , K. and Vilchek , L. 1994 . Development of an Everglades Vegetation Map Using a SPOT Image and the Global Positioning System . Photogrammetric Engineering and Remote Sensing , 60 : 767 – 775 .
  • Rutchey , K. and Vilchek , L. 1999 . Air Photointerpretation and Satellite Imagery Analysis Techniques for Mapping Cattail Coverage in a Northern Everglades Impoundment . Photogrammetric Engineering and Remote Sensing , 65 : 185 – 191 .
  • Smith, S. L., D. A. Holland, and P. A. Longley. 2004. “The Importance of Understanding Error in LiDAR Elevation Models.” In Proceedings of the ISPRS Congress, Istanbul, July 12–23.
  • Trimble. 2011. eCognition Developer 8.64.1 Reference Book. Westminster, CO: Trimble Geospatial Imaging.
  • Voss , M. and Sugumaran , R. 2008 . Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object-Oriented Approach . Sensors , 8 : 3020 – 3036 .
  • Zhang, C. 2010. “Urban Forest Inventory Using Airborne LiDAR Data and Hyperspectral Imagery.” PhD diss., University of Texas at Dallas, Dallas, TX.
  • Zhang , C. and Qiu , F. 2012 . Mapping Individual Tree Species in an Urban Forest Using Airborne LiDAR Data and Hyperspectral Imagery . Photogrammetric Engineering and Remote Sensing , 78 : 1079 – 1087 .
  • Zhang , C. and Xie , Z. 2012 . Combining Object-Based Texture Measures with a Neural Network for Vegetation Mapping in the Everglades From Hyperspectral Imagery . Remote Sensing of Environment , 124 : 310 – 320 .
  • Zhang , C. and Xie , Z. 2013a . Object-Based Vegetation Mapping in the Kissimmee River Watershed Using HyMAP Data and Machine Learning Techniques . Wetlands , 33 : 233 – 244 .
  • Zhang , C. and Xie , Z. 2013b . Data Fusion and Classifier Ensemble Techniques for Vegetation Mapping in the Everglades . Geocarto International , doi: 10.1080/10106049.2012.756940
  • Zhang , J. 2010 . Multi-Source Remote Sensing Data Fusion: Status and Trends . International Journal of Image and Data Fusion , 1 : 5 – 24 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.