613
Views
9
CrossRef citations to date
0
Altmetric
Articles

Airborne LiDAR point cloud in mapping of fluvial forms: a case study of a Hungarian floodplain

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 862-880 | Received 11 Aug 2016, Accepted 01 Jun 2017, Published online: 16 Jun 2017

References

  • Alexander, C., B. Deák, A. Kania, W. Mücke, and H. Heilmeier. 2015. “Classification of Vegetation in an Open Landscape Using Full-Waveform Airborne Laserscanner Data.” International Journal of Applied Earth Observation and Geoinformation 41: 76–87. doi:10.1016/j.jag.2015.04.014.
  • Balogh, M., T. Kiss, and K. Fiala. 2016. “Folyóhátak térbeli jellegzetességei LiDAR felvételek alapján.” In Az elmélet és a gyakorlat találkozása a térinformatikában VII., Térinformatikai Konferencia és Szakkiállítás, edited by B. Boglárka, 55–62. Debrecen: Universitas Alapítvány.
  • Bölöni, J., Z. Molnár, M. Biró, and F. Horváth. 2008. “Distribution of the (Semi-)Natural Habitats in Hungary II. Woodlands and Shrublands.” Acta Botanica Hungarica 50: 107–148. doi:10.1556/ABot.50.2008.Suppl.6.
  • Bretar, F., A. Chauve, J.-S. Bailly, C. Mallet, and A. Jacome. 2009. “Terrain Surfaces and 3-D Landcover Classification from Small Footprint Full-Waveform Lidar Data: Application to Badlands.” Hydrol Earth Systems Sciences 13: 1531–1544. doi:10.5194/hess-13-1531-2009.
  • Ciszewski, D. 2003. “Heavy Metals in Vertical Profiles of the Middle Odra River Overbank Sediments: Evidence for Pollution Changes.” Water, Air and Soil Pollution 143: 81–98. doi:10.1023/A:1022825103974.
  • Clark Labs. 2012. IDRISI Selva. Worcester, USA: Clark University. https://clarklabs.org/.
  • Cohen, J. 1992. “Statistical Power Analysis.” Current Directions in Psychological Science 1: 98–101. doi:10.1111/1467-8721.ep10768783.
  • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37: 35–46. doi:10.1016/0034-4257(91)90048-B.
  • Deshpande, S. S. 2013. “Improved Floodplain Delineation Method Using High-Density LiDAR Data.” Computer-Aided Civil and Infrastructure Engineering 28: 68–79. doi:10.1111/j.1467-8667.2012.00774.x.
  • DeWitt, J. D., T. A. Warner, and J. F. Conley. 2015. “Comparison of DEMS Derived from USGS DLG, SRTM, a Statewide Photogrammetry Program, ASTER GDEM and Lidar: Implications for Change Detection.” GIScience & Remote Sensing 52 (2): 179–197. doi:10.1080/15481603.2015.1019708.
  • Dollar, E. S. J., C. S. James, K. H. Rogers, and M. C. Thoms. 2007. “A Framework for Interdisciplinary Understanding of Rivers as Ecosystems.” Geomorphology 89: 147–162. doi:10.1016/j.geomorph.2006.07.022.
  • Drǎguţ, L., J. Minár, O. Csillik, and I. S. Evans. 2013. “Land-Surface Segmentation to Delineate Elementary Forms from Digital Elevation Models.” Geomophometry 2013: 2–5. http://geomorphometry.org/system/files/Dragut2013geomorphometry1.pdf.
  • ESRI. 2014. Arcgis Desktop: Release 10.3. Redlands, CA: Environmental Systems Research Institute.
  • Field, A. 2009. Discovering Statistics Using SPSS, 821. London: SAGE Publications.
  • Ghuffar, S., B. Székely, A. Roncat, and N. Pfeifer. 2013. “Landslide Displacement Monitoring Using 3D Range Flow on Airborne and Terrestrial Lidar Data.” Remote Sensing 5: 2720–2745. doi:10.3390/rs5062720.
  • Haboudane, D., J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. Strachan. 2004. “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote Sensing of Environment 90 (3): 337–352. doi:10.1016/j.rse.2003.12.013.
  • Hamar, J., and A. Sárkány-Kiss. 1999. “The Upper Tisza Valley.” Tisza Monograph Series, 502. Szeged: Tisza Klub’s Publications. http://expbio.bio.u-szeged.hu/ecology/tiscia/monograph/TISCIA-monograph4.pdf.
  • Hothorn, T., K. Hornik, M. A. Van de Wiel, and A. Zeileis. 2006. “A Lego System for Conditional Inference.” The American Statistician 60: 257–263. doi:10.1198/000313006X118430.
  • Hughes, F. M. R. 1997. “Floodplain Biogeomorphology.” Progress in Physical Geography 21: 501–529. doi:10.1177/030913339702100402.
  • Jones, A. F., P. A. Brewer, E. Johnstone, and M. G. Macklin. 2007. “High-Resolution Interpretative Geomorphological Mapping of River Valley Environments Using Airborne Lidar Data.” Earth Surface Processes and Landforms 32 (10): 1574–1592. doi:10.1002/esp.1505.
  • Király, G., G. Brolly, and P. Burai. 2012. “Tree Height and Species Estimation Methods for Airborne Laser Scanning in a Forest Reserve.” In Full Proceedings of Silvilaser 2012, edited by N. Coops and M. Wulder, 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems. https://www.researchgate.net/profile/Geza_Kiraly/publication/228808714_Tree_height_estimation_methods_for_terrestrial_laser_scanning_in_a_forest_reserve/links/540719020cf2c48563b292f4.pdf
  • Kiss, T., and A. Sándor. 2009. “Land-Use Changes and Their Effect on Floodplain Aggradation along the Middle-Tisza River, Hungary.” AGD Landscape and Environment 3 (1): 1–10. http://landscape.geo.klte.hu/pdf/agd/2009/2009v3is1_1.pdf.
  • Kundrát, J. T., E. Simon, I. Gyulai, G. Lakatos, and B. Tóthmérész. 2016. “Short-Term Weather Fluctuation and Quality Assessment of Oxbows.” Időjárás /Quaterly Journal of the Hungarian Meterological Service 120: 301–313. http://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/.
  • Lewin, J. 1978. “Floodplain Geomorphology.” Progress in Physical Geography 2: 408–437. https://www.researchgate.net/publication/295861592_Floodplain_geomorphology.
  • Lóczy, D., E. Pirkhoffer, and P. Gyenizse. 2012. “Geomorphometric Floodplain Classification in a Hill Region of Hungary.” Geomorphology 147–148: 61–72. doi:10.1016/j.geomorph.2011.06.040.
  • McGarigal, K., and B. J. Marks. 1995. “FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure.” Gen. Tech. Rep. PNW-GTR-351. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station 134. http://www.umass.edu/landeco/pubs/mcgarigal.marks.1995.pdf.
  • Middelkoop, H. 2000. “Heavy Metal Pollution of the River Rhine and Meuse Floodplains in the Netherlands.” Netherlands Journal of Geosciences 79: 411–427. doi:10.1017/S0016774600021910.
  • Nguyen, H. L., M. Braun, I. Szaloki, W. Baeyens, R. Van Grieken, and M. Leermakers. 2009. “Tracing the Metal Pollution History of the Tisza River through the Analysis of a Sediment Depth Profile.” Water Air and Soil Pollution 200 (1–4): 119–132. doi:10.1007/s11270-008-9898-2.
  • Notebaert, B., G. Verstraeten, G. Govers, and J. Poesen. 2009. “Qualitative and Quantitative Applications of Lidar Imagery in Fluvial Geomorphology.” Earth Surface Processes and Landforms 34: 217–231. doi:10.1002/esp.1705.
  • Nyarko, B. K., B. Diekkrüger, N. C. Van de Giesen, and P. L. G. Vlek. 2015. “Floodplain Wetland Mapping in the White Volta River Basin of Ghana.” Giscience & Remote Sensing 52 (3): 374–395. doi:10.1080/15481603.2015.1026555.
  • O’ Connell, E., J. Ewen, G. O’ Donnell, and P. Quinn. 2007. “Is There a Link between Agricultural Land-Use Management and Flooding?” Hydrology Earth Systems Sciences 11 (1): 96–107. doi:10.5194/hess-11-96-2007.
  • Ortmann-Ajkai, A., D. Lóczy, P. Gyenizse, and E. Pirkhoffer. 2014. “Wetland Habitat Patches as Ecological Components of Landscape Memory in a Highly Modified Floodplain.” River Research and Applications 30: 874–886. doi:10.1002/rra.2685.
  • Passalacqua, P., J. H. Hillier, and P. Tarolli. 2014. “Innovative Analysis and Use of High-Resolution DTMs for Quantitative Interrogation of Earth-Surface Processes.” Earth Surface Processes and Landforms 39: 1400–1403. doi:10.1002/esp.3616.
  • Podhoranyi, M., and D. Fedorcak. 2015. “Inaccuracy Introduced by Lidar-Generated Cross Sections and Its Impact on 1D Hydrodynamic Simulations.” Environmental Earth Sciences 73 (1): 1–11. doi:10.1007/s12665-014-3390-7.
  • R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Ramos, J., L. Maruffo, and F. J. González. 2009. “Use of Lidar Data Floodplain Risk Management Planning: The Experience of Tabasco 2007 Flood.” In Advances in Geoscience and Remote Sensing, edited by G. Jedlovec, 659–678. Rijeka, Croatia: InTech. doi:10.5772/8322.
  • Rapinel, S., L. Hubert-Moy, and B. Clément. 2011. “Using Lidar Data to Evaluate Wetland Functions.” In 34th International Symposium on Remote Sensing of Environment, Sydney, Australia. http://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00562.pdf.
  • Riaño, D., E. Chuvieco, S. L. Ustin, J. Salas, J. R. Rodríguez-Pérez, L. M. Ribeiro, D. X. Viegas, J. M. Moreno, and H. Fernández. 2007. “Estimation of Shrub Height for Fuel-Type Mapping Combining Airborne LiDAR and Simultaneous Color Infrared Ortho Imaging.” International Journal of Wildland Fire 16 (3): 341–348. doi:10.1071/WF06003.
  • Ritter, D. F., R. C. Kochel, and J. R. Miller. 2011. “Fluvial Landforms.” In Process Geomorphology, 264–274. 5th ed. Long Grove, IL: Waveland Press.
  • Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1973. “Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite).” In Proceedings of Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada SP-351: 309–317. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf.
  • Schindler, S., F. H. O’Neill, M. Biró, C. Damm, V. Gasso, R. Kanka, T. Van der Sluis, et al. 2016. “Multifunctional Floodplain Management and Biodiversity Effects: A Knowledge Synthesis for Six European Countries.” Biodiversity and Conservation 25: 1349–1382. doi:10.1007/s10531-016-1129-3.
  • Schweitzer, F., I. Nagy, and L. Alföldi. 2002. “Jelenkori övzátony (parti gát) képződés és hullámtéri lerakódás a Közép-Tisza térségében.” Földrajzi értesítő 51 (3–4): 257–278. http://www.mtafki.hu/konyvtar/kiadv/FE2002/FE20023-4_257-278.pdf.
  • Scown, M. W., M. C. Thoms, and N. R. D. Jager. 2015. “Floodplain Complexity and Surfacemetrics: Influences of Scale and Geomorphology.” Geomorphology 245: 102–116. doi:10.1016/j.geomorph.2015.05.024.
  • Seijmonsbergen, A. C., T. Hengl, and N. S. Anders. 2011. “Semi-Automated Identification and Extraction of Geomorphological Features Using Digital Elevation Data.” Developments in Earth Surface Processes 15: 297–335. doi:10.1016/B978-0-444-53446-0.00010-0.
  • SH/2/6 project final report edited by ENVIROSENSE HUNGARY Kft. 2013.Updating the flood protection plans for sections of the river Tisza under the management of the Environmental and Water Management Directorate of the Tiszántúl Region (TIKÖVIZIG) and the North Hungarian Environment and Water Directorate (ÉKÖVIZIG). Updating the flood protection plans for sections of the river Tisza under the management of the Environmental and Water Management Directorate of the Tiszántúl Region (TIKÖVIZIG) and the North Hungarian Environment and Water Directorate (ÉKÖVIZIG). 77. Debrecen.
  • Singh, K. K., J. B. Vogler, D. A. Shoemaker, and R. K. Meentemeyer. 2012. “Lidar-Landsat Data Fusion for Large-Area Assessment of Urban Land Cover: Balancing Spatial Resolution, Data Volume and Mapping Accuracy.” ISPRS Journal of Photogrammetry and Remote Sensing 74: 110–121. doi:10.1016/j.isprsjprs.2012.09.009.
  • Sofia, G., G. Dalla Fontana, and P. Tarolli. 2014. “High-Resolution Topography and Anthropogenic Feature Extraction: Testing Geomorphometric Parameters in Floodplains.” Hydrological Processes 28 (4): 2046–2061. doi:10.1002/hyp.9727.
  • Surian, N. 1999. “Channel Changes Due to River Regulation: The Case of the Piave River, Italy.” Earth Surface Processes and Landforms 24: 1135–1151. doi:10.1002/(SICI)1096-9837(199911)24:12<1135::AID-ESP40>3.0.CO;2-F.
  • Szabó, J., R. Vass, and C. Tóth. 2012. “Examination of Fluvial Development on Study Areas of Upper-Tisza Region.” Carpathian Journal of Earth and Environmental Sciences 7 (4): 241–253. https://www.researchgate.net/publication/260052211_Examination_of_fluvial_development_on_study_areas_of_Upper-Tisza_region.
  • Szabó, S., P. Enyedi, M. Horváth, Z. Kovács, P. Burai, T. Csoknyai, and G. Szabó. 2016. “Automated Registration of Potential Locations for Solar Energy Production with Light Detection and Ranging (LiDAR) and Small Format Photogrammetry.” Journal of Cleaner Production 112: 3820–3829. doi:10.1016/j.jclepro.2015.07.117.
  • Szabó, S., Z. Gácsi, and B. Balázs. 2016. “Specific Features of NDVI, NDWI, and MNDWI as Reflected in Land Cover Categories.” Landscape & Environment 10 (3–4): 194–202. doi:10.21120/LE/10/3-4/13.
  • Szabó, S., P. Szilassi, and P. Csorba. 2012. “Tools for Landscape Ecological Planning – Scale, and Aggregation Sensitivity of the Contagion Type Ladscape Metric Indices.” Carpathian Journal of Earth and Environmental Sciences 7 (3): 127–136. https://www.researchgate.net/publication/230703111_Tools_for_landscape_ecological_planning_scale_and_aggregation_sensitivity_of_the_contagion_type_landscape_metric_indices.
  • Szalai, Z. 1998. “Trace Metal Pollution and Microtopography in a Floodplain, the Haros Island (Budapest).” Geografia Fisica e Dinamica Quaternaria 21 (1): 75–78. https://www.researchgate.net/publication/291151257_Trace_metal_pollution_and_microtopography_in_a_floodplain_the_Haros_Island_Budapest.
  • Tälle, M., B. Deák, P. Poschlod, O. Valkó, L. Westerberg, and P. Milberg. 2016. “Grazing Vs. Mowing: A Meta-Analysis of Biodiversity Benefits for Grassland Management.” Agriculture, Ecosystems & Environment 222: 200–212. doi:10.1016/j.agee.2016.02.008.
  • Tamás, M., and A. Farsang. 2011. “Evaluation of Environmental Condition: Water and Sediment Examination of Oxbow Lakes.” Acta Geographica Debrecina Landscape and Environment 5 (2): 84–92. http://agris.fao.org/agris-search/search.do?recordID=DJ2012092561. ISSN: .
  • Tarolli, P. 2014. “High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges.” Geomorphology 216: 295–312. doi:10.1016/j.geomorph.2014.03.008.
  • Tarolli, P., and G. Sofia. 2016. “Human Topographic Signatures and Derived Geomorphic Processes across Landscapes.” Geomorphology 255: 140–161. doi:10.1016/j.geomorph.2015.12.007.
  • Telbisz, T., T. Látos, M. Deák, B. Székely, Z. Koma, and T. Standovár. 2016. “The Advantage of LiDAR Digital Terrain Models in Doline Morphometry Compared to Topographic Map Based Datasets – Aggtelek Karst (Hungary) as an Example.” Acta Carsologica /Karsoslovni Zbornik 45 (1): 5–18. doi:10.3986/ac.v45i1.4138.
  • Thoms, M. C. 2003. “Floodplain – River Ecosystems: Lateral Connections and the Implications of Human Interference.” Geomorphology 56: 335–349. doi:10.1016/S0169-555X(03)00160-0.
  • Timár, G., and G. Gábris. 2006. “Estimation of Water Conductivity of the Natural Flood Channels on the Tisza Flood-Plain, the Great Hungarian Plain.” Geomorphology 98 (3–4): 250–261. doi:10.1016/j.geomorph.2006.12.031.
  • Vári, A., J. Linnerooth-Bayer, and Z. Ferencz. 2003. “Stakeholder Views on Flood Risk Management in Hungary’s Upper Tisza Basin.” Risk Analysis 23 (3): 585–600. doi:10.1111/1539-6924.00339/full.
  • Verstappen, H. 2011. “Old and New Trends in Geomorphological and Landform Mapping.” In Geomorphological Mapping: A Handbook of Techniques and Applications, edited by M. J. Smith, P. Paron, and J. Griffiths, 13–38. Amsterdam: Elsevier. https://www.researchgate.net/publication/251463669_Old_and_New_Trends_in_Geomorphological_and_Landform_Mapping.
  • Williams, G. J. 2011. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery, Use R!, 374. Springer. doi:10.1007/978-1-4419-9890-3.
  • Xu, H., C. Caramanis, and S. Mannor. 2009. “Robustness and Generalization of Support Vector Machines.” Journal of Machine Learning Research 10: 1485–1510. http://jmlr.csail.mit.edu/papers/volume10/xu09b/xu09b.pdf.
  • Zlinszky, A., B. Deák, A. Kania, A. Schroiff, and N. Pfeifer. 2015. “Mapping Natura 2000 Habitat Conservation Status in a Pannonic Salt Steppe with Airborne Laser Scanning.” Remote Sensing 7: 2991–3019. doi:10.3390/rs70302991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.