1,912
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Regional-scale burned area mapping in Mediterranean regions based on the multitemporal composite integration of Sentinel-1 and Sentinel-2 data

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1678-1705 | Received 01 Mar 2022, Accepted 13 Sep 2022, Published online: 30 Sep 2022

References

  • Alcaras, E., D. Costantino, F. Guastaferro, C. Parente, and M. Pepe. 2022. “Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery.” Remote Sensing 14 (7): 1727. doi:10.3390/rs14071727.
  • ASF. 2022. Accessed July 21. https://asf.alaska.edu/.
  • Axel, A. C., 2018. Burned Area Mapping of an Escaped Fire into Tropical Dry Forest in Western Madagascar Using Multi-Season Landsat OLI Data. Remote Sens. https://doi.org/10.3390/rs10030371
  • Ban, Y., P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder. 2020. “Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning.” Scientific Reports 10 (1): 1–15. doi:10.1038/s41598-019-56967-x.
  • Barbosa, P. M., J. M. C. Pereira, and J.-M. Grégoire. 1998. “Compositing Criteria for Burned Area Assessment Using Multitemporal Low Resolution Satellite Data.” Remote Sensing of Environment 65 (1): 38–49.
  • Barbosa, P. M., D. Stroppiana, J. M. Grégoire, and J. M. C. Pereira. 1999. “An Assessment of Vegetation Fire in Africa (1981-1991): Burned Areas, Burned Biomass, and Atmospheric Emissions.” Global Biogeochemical Cycles 13 (4): 933–950. doi:10.1029/1999GB900042.
  • Belenguer-Plomer, M. A., E. Chuvieco, and M. A. Tanase. 2019. “Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean Burned Areas.” Remote Sensing 11 (22): 2661. doi:10.3390/rs11222661.
  • Boschetti, L., D. P. Roy, C. O. Justice, and M. L. Humber. 2015. “MODIS–Landsat Fusion for Large Area 30m Burned Area Mapping.” Remote Sens. Environ 161: 27–42. doi:10.1016/j.rse.2015.01.022.
  • Breiman L. 2001. Machine Learning. 45(1): 5–32. doi:10.1023/A:1010933404324
  • Cabral, A., M. J. P. De Vasconcelos, J. M. C. Pereira, É. Bartholomé, and P. Mayaux. 2003. “Multi-temporal Compositing Approaches for SPOT-4 Vegetation.” International Journal of Remote Sensing 24 (16): 3343–3350. doi:10.1080/0143116031000075936.
  • Carreiras, J. M. B., S. Quegan, K. Tansey, and S. Page. 2020. “Sentinel-1 Observation Frequency Significantly Increases Burnt Area Detectability in Tropical SE Asia.” Environmental Research Letters 15 (5): 054008. doi:10.1088/1748-9326/ab7765.
  • Cascio, W. E. 2018. “Wildland Fire Smoke and Human Health.” The Science of the Total Environment 624: 586–595. doi:10.1016/j.scitotenv.2017.12.086.
  • Christopoulou, A., N. M. Fyllas, P. Andriopoulos, N. Koutsias, P. G. Dimitrakopoulos, and M. Arianoutsou. 2014. “Post-fire Regeneration Patterns of Pinus Nigra in a Recently Burned Area in Mount Taygetos, Southern Greece: The Role of Unburned Forest Patches.” Forest Ecology and Management 327: 148–156. doi:10.1016/j.foreco.2014.05.006.
  • Chuvieco, E. 2009. “Earth Observation of Wildland Fires in Mediterranean Ecosystems, Earth Observation of Wildland Fires in Mediterranean Ecosystems.” Springer Berlin Heidelberg. doi:10.1007/978-3-642-01754-4.
  • Chuvieco, E., and M. P. Martin. 1994. “Global Fire Mapping and Fire Danger Estimation Using AVHRR Images.” Photogramm. Eng. Remote Sensing 60: 563–570.
  • Chuvieco, E., F. Mouillot, G. R. van der Werf, J. San Miguel, M. Tanasse, N. Koutsias, M. García, et al. 2019. “Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation.” Remote Sens. Environ 225: 45–64. doi:10.1016/j.rse.2019.02.013.
  • Chuvieco, E., G. Ventura, M. P. Martín, and I. Gómez. 2005. “Assessment of Multitemporal Compositing Techniques of MODIS and AVHRR Images for Burned Land Mapping.” Remote Sensing of Environment 94 (4): 450–462. doi:10.1016/j.rse.2004.11.006.
  • Chuvieco, E., C. Yue, A. Heil, F. Mouillot, I. Alonso-Canas, M. Padilla, J. M. Pereira, D. Oom, and K. Tansey. 2016. “A New Global Burned Area Product for Climate Assessment of Fire Impacts.” Global Ecology and Biogeography 25 (5): 619–629. doi:10.1111/geb.12440.
  • Congalton, R. G., and K. Green, 2019. Assessing the Accuracy of Remotely Sensed Data. Principles and Practices, CRC Press
  • Copernicus Long Term Archive Access. 2022. Accessed July 21. https://scihub.copernicus.eu/userguide/LongTermArchive
  • COS. 2018. Accessed July 21 2012. https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-para-2018
  • Crowley, M. A., J. A. Cardille, J. C. White, and M. A. Wulder. 2019. “Generating intra-year Metrics of Wildfire Progression Using Multiple open-access Satellite Data Streams.” Remote Sens. Environ 232: 111295. doi:10.1016/j.rse.2019.111295.
  • Cutler D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson and J. J. Lawler. 2007. “Random Forests for Classification in Ecology.“ Ecology 88 (11): 2783–2792. doi:10.1890/07-0539.1
  • De Luca, G., N. Silva, J. M. Cerasoli, S. Araújo, J. Campos, J. Di Fazio, and S. Modica, G. 2019. “Object-Based Land Cover Classification of Cork Oak Woodlands Using UAV Imagery and Orfeo ToolBox.” Remote Sensing 11 (10): 1238. doi:10.3390/rs11101238.
  • De Luca, G., J. M. N. Silva, and G. Modica. 2021. “A Workflow Based on Sentinel-1 SAR Data and open-source Algorithms for Unsupervised Burned Area Detection in Mediterranean Ecosystems.” GIScience Remote Sens 00: 1–26. doi:10.1080/15481603.2021.1907896.
  • Donezar, U., T. De Blas, A. Larrañaga, F. Ros, L. Albizua, A. Steel, and M. Broglia. 2019. “Applicability of the Multitemporal Coherence Approach to Sentinel-1 for the Detection and Delineation of Burnt Areas in the Context of the Copernicus Emergency Management Service.” Remote Sensing 11 (22): 2607. doi:10.3390/rs11222607.
  • EFFIS Annual Fire Reports. 2021. Accessed May 04. https://effis.jrc.ec.europa.eu/reports-and-publications/annual-fire-reports
  • EFFIS Rapid Damage Assessment. 2021. Accessed September 26. https://effis.jrc.ec.europa.eu/about-effis/technicavl-background/rapid-damage-assessment
  • Epting, J., D. Verbyla, and B. Sorbel. 2005. “Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+.” Remote Sensing of Environment 96 (3–4): 328–339. doi:10.1016/j.rse.2005.03.002.
  • ESA Sentinel Homepage. 2021. Accessed March 11. https://sentinel.esa.int/web/sentinel/home
  • Esri ArcGIS World Imagery. 2021. Accessed March 19. https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
  • European Environment Agency. 2021. Accessed July 21. https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-3/#tab-chart_5
  • Eva, H., and E. F. Lambin. 1998. “Burnt Area Mapping in Central Africa Using ATSR Data.” International Journal of Remote Sensing 19 (18): 3473–3497. doi:10.1080/014311698213768.
  • Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, et al. 2007. “The Shuttle Radar Topography Mission.” Reviews of Geophysics 45 (2): 1–33. doi:10.1029/2005RG000183.
  • Fernández-García, V., M. Santamarta, A. Fernández-Manso, C. Quintano, E. Marcos, and L. Calvo. 2018. “Burn Severity Metrics in fire-prone Pine Ecosystems along a Climatic Gradient Using Landsat Imagery.” Remote Sens. Environ 206: 205–217. doi:10.1016/j.rse.2017.12.029.
  • Fernández, A., P. Illera, and J. L. Casanova. 1997. “Automatic Mapping of Surfaces Affected by Forest Fires in Spain Using AVHRR NDVI Composite Image Data.” Remote Sens. Environ 60 (2): 153–162. doi:10.1016/S0034-4257(96).
  • Filipponi, F. 2018. “BAIS2: Burned Area Index for Sentinel-2.” Proceedings 5177. doi:10.3390/ecrs-2-05177.
  • Filipponi, F. 2019. “Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires.” Remote Sensing 11 (6): 622. doi:10.3390/rs11060622.
  • Fornacca, D., G. Ren, and W. Xiao. 2018. “Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several post-fire Dates in a Mountainous Region of Northwest Yunnan, China.” Remote Sensing 10 (8): 1196. doi:10.3390/rs10081196.
  • Fraser, R. H., Z. Li, J. Cihlar, Z. Li, J. Cihlar, and J. Cihlar. 2000. “Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest.” Remote Sensing of Environment 74 (3): 362–376. doi:10.1016/S0034-4257(00).
  • Fukunaga, K., and L. D. Hostetler. 1975. “The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition.” IEEE Transactions on Information Theory 21 (1): 32–40. doi:10.1109/TIT.1975.1055330.
  • Gallagher, M. R., N. S. Skowronski, M. R. Gallagher, N. S. Skowronski, E. J. Green, R. G. Lathrop, E. J. Green, et al. 2020. “An Improved Approach for Selecting and Validating Burn Severity Indices in Forested Landscapes an Improved Approach for Selecting and Validating Burn Severity Indices in Feux Dans Des Milieux Forestiers.” . Canadian Journal of Remote Sensing 46 (1): 100–111. doi:10.1080/07038992.2020.1735931.
  • Georgopoulos, N., D. Stavrakoudis, and I. Z. Gitas, 2019. Object-Based Burned Area Mapping Using Sentinel-2 Imagery and Supervised Learning Guided by Empirical Rules in: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July - 2 August 2019, Yokohama, Japan, pp. 9980–9983. 10.1109/IGARSS.2019.8900134
  • Giglio, L., L. Boschetti, D. P. Roy, M. L. Humber, and C. O. Justice. 2018. “The Collection 6 MODIS Burned Area Mapping Algorithm and Product.” Remote Sens. Environ 217: 72–85. doi:10.1016/j.rse.2018.08.005.
  • Gimeno, M., J. San-Miguel-Ayanz, and G. Schmuck. 2004. “Identification of Burnt Areas in Mediterranean Forest Environments from ERS-2 SAR Time Series.” International Journal of Remote Sensing 25 (22): 4873–4888. doi:10.1080/01431160412331269715.
  • Gitas, I. Z., G. H. Mitri, and G. Ventura. 2004. “Object-based Image Classification for Burned Area Mapping of Creus Cape, Spain, Using NOAA-AVHRR Imagery.” Remote Sensing of Environment 92 (3): 409–413. doi:10.1016/j.rse.2004.06.006.
  • Gitas, I., G. Mitri, S. Veraverbeke, and A. Polychronaki. 2012. “Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring - A Review.” Remote Sens. Biomass - Princ. Appl. doi:10.5772/20571.
  • Goodwin, N. R., and L. J. Collett. 2014. “Development of an Automated Method for Mapping Fire History Captured in Landsat TM and ETM+ Time Series across Queensland, Australia.” Remote Sens. Environ 148: 206–221. doi:10.1016/j.rse.2014.03.021.
  • Google Earth. 2021. Accessed March 19. https://www.google.com/earth/index.html
  • Goutte, C., and E. Gaussier. 2005. “A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation.” Lect. Notes Comput. Sci 3408: 345–359. doi:10.1007/978-3-540-31865-1_25.
  • Hachani, A., M. Ouessar, S. Paloscia, E. Santi, and S. Pettinato. 2019. “Soil Moisture Retrieval from Sentinel-1 Acquisitions in an Arid Environment in Tunisia: Application of Artificial Neural Networks Techniques.” International Journal of Remote Sensing 40 (24): 9159–9180. doi:10.1080/01431161.2019.1629503.
  • Hardy, C. C. 2005. “Wildland Fire Hazard and Risk: Problems, Definitions, and Context.” Forest Ecology and Management 211 (1–2): 73–82. doi:10.1016/j.foreco.2005.01.029.
  • Hawbaker, T. J., M. K. Vanderhoof, Y.-J. Beal, J. D. Takacs, G. L. Schmidt, J. T. Falgout, B. Williams, et al. 2017. “Mapping Burned Areas Using Dense time-series of Landsat Data.” Remote Sensing of Environment 198: 504–522. doi:10.1016/j.rse.2017.06.027.
  • Holben, B. N. 1986. “Characteristics of maximum-value Composite Images from Temporal AVHRR Data.” International Journal of Remote Sensing 7 (11): 1417–1434. doi:10.1080/01431168608948945.
  • Hosseini, M., and H. McNairn. 2017. “Using multi-polarization C- and L-band Synthetic Aperture Radar to Estimate Biomass and Soil Moisture of Wheat Fields.” Int. J. Appl. Earth Obs. Geoinf 58: 50–64. doi:10.1016/j.jag.2017.01.006.
  • ICNF. 2017. Accessed May 18. https://www.icnf.pt/api/file/doc/2c45facee8d3e4f8
  • Imperatore, P., R. Azar, F. Calo, D. Stroppiana, P. A. Brivio, R. Lanari, and A. Pepe. 2017. “Effect of the Vegetation Fire on Backscattering: An Investigation Based on Sentinel-1 Observations.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (10): 4478–4492. doi:10.1109/JSTARS.2017.2717039.
  • Inoue, Y., J. Qi, A. Olioso, Y. Kiyono, T. Horie, H. Asai, K. Saito, et al. 2008. “Reflectance characteristics of major land surfaces in slash‐and‐burn ecosystems in Laos.” International Journal of Remote Sensing 29 (7): 2011–2019. doi:10.1080/01431160701442039.
  • Kasischke, E. S., N. H. F. French, P. Harrell, N. L. Christensen, S. L. Ustin, and D. Barry. 1993. “Monitoring of Wildfires in Boreal Forests Using Large Area AVHRR NDVI Composite Image Data.” Remote Sensing of Environment 45 (1): 61–71. doi:10.1016/0034-4257(93).
  • Kaufman, Y. J., and L. A. Remer. 1994. “Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies.” IEEE Transactions on Geoscience and Remote Sensing 32 (3): 672–683. doi:10.1109/36.297984.
  • Key, C. H., and N. C. Benson, 2006. Landscape Assessment (LA) Sampling and Analysis Methods, In: FIREMON: Fire Effects Monitoring and Inventory System
  • Kim, Y., T. Jackson, R. Bindlish, S. Hong, G. Jung, and K. Lee. 2014. “Retrieval of Wheat Growth Parameters with Radar Vegetation Indices.” IEEE Geoscience and Remote Sensing Letters 11 (4): 808–812. doi:10.1109/LGRS.2013.2279255.
  • Kim, Y., T. Jackson, R. Bindlish, H. Lee, and S. Hong. 2012. “Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean.” IEEE Geoscience and Remote Sensing Letters 9 (4): 564–568. doi:10.1109/LGRS.2011.2174772.
  • Kim, Y., and J. J. Van Zyl. 2009. “A time-series Approach to Estimate Soil Moisture Using Polarimetric Radar Data.” IEEE Trans. Geosci. Remote Sens. doi:10.1109/TGRS.2009.2014944.
  • Knopp, L., M. Wieland, M. Rättich, and S. Martinis. 2020. “A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data.” Remote Sensing 12 (15): 2422. doi:10.3390/RS12152422.
  • Kurum, M., 2015. C-Band SAR Backscatter Evaluation of 2008 Gallipoli Forest Fire 12, 1091–1095.
  • Lasaponara, R., and B. Tucci. 2019. “Identification of Burned Areas and Severity Using SAR Sentinel-1.” IEEE Geoscience and Remote Sensing Letters 16 (6): 917–921. doi:10.1109/LGRS.2018.2888641.
  • Lasko, K. 2019. “Incorporating Sentinel-1 SAR Imagery with the MODIS MCD64A1 Burned Area Product to Improve Burn Date Estimates and Reduce Burn Date Uncertainty in Wildland Fire Mapping Incorporating Sentinel-1 SAR Imagery with the MODIS MCD64A1 Burned Area Product to Imp.” Geocarto International 0: 1–21. doi:10.1080/10106049.2019.1608592.
  • Lee, J.-S., and E. Pottier. 2009. “Filtering of Single Polarization SAR Data, In: CRC Press. (Ed.), Polarimetric Radar Imaging. From Basics to Applications.” CRC Press., Boca Raton. doi:10.1201/9781420054989.
  • Lehmann, E. A., P. Caccetta, K. Lowell, A. Mitchell, Z.-S. Zhou, A. Held, T. Milne, and I. Tapley. 2015. “SAR and Optical Remote Sensing: Assessment of Complementarity and Interoperability in the Context of a large-scale Operational Forest Monitoring System.” Remote Sensing of Environment 156: 335–348. doi:10.1016/j.rse.2014.09.034.
  • Llorens, R., J. A. Sobrino, C. Fernández, J. M. Fernández-Alonso, and J. A. Vega. 2021. “A Methodology to Estimate Forest Fires Burned Areas and Burn Severity Degrees Using Sentinel-2 Data. Application to the October 2017 Fires in the Iberian Peninsula. Int. J. Appl. Earth Obs.” Geoinf 95: 102243. doi:10.1016/j.jag.2020.102243.
  • Martins, F. S. R. V., J. R. Dos Santos, L. S. Galvao, and H. A. M. Xaud. 2016. “Sensitivity of ALOS/PALSAR Imagery to Forest Degradation by Fire in Northern Amazon.” Int. J. Appl. Earth Obs. Geoinf 49: 163–174. doi:10.1016/j.jag.2016.02.009.
  • Mayaux, P., V. Gond, and E. Bartholome. 2000. “A near-real Time forest-cover Map of Madagascar Derived from SPOT-4 VEGETATION Data.” International Journal of Remote Sensing 21 (16): 3139–3144. doi:10.1080/01431160050145018.
  • Meddens, A. J. H., C. A. Kolden, and J. A. Lutz. 2016. “Detecting Unburned Areas within Wildfire Perimeters Using Landsat and Ancillary Data across the Northwestern United States.” Remote Sensing of Environment 186: 275–285. doi:10.1016/j.rse.2016.08.023.
  • Michel, J., D. Youssefi, and M. Grizonnet. 2015. “Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 53 (2): 952–964. doi:10.1109/TGRS.2014.2330857.
  • Miettinen, J., E. Hyer, A. S. Chia, L. K. Kwoh, and S. C. Liew. 2013. “Detection of Vegetation Fires and Burnt Areas by Remote Sensing in Insular Southeast Asian Conditions: Current Status of Knowledge and Future Challenges.” International Journal of Remote Sensing 34 (12): 4344–4366. doi:10.1080/01431161.2013.777489.
  • Miettinen, J., and S. C. Liew. 2008. “Comparison of Multitemporal Compositing Methods for Burnt Area Detection in Southeast Asian Conditions.” International Journal of Remote Sensing 29 (4): 1075–1092. doi:10.1080/01431160701281031.
  • Miller, J. D., and A. E. Thode. 2007. “Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (Dnbr).” Remote Sensing of Environment 109 (1): 66–80. doi:10.1109/LGRS.2011.2174772.
  • Mitri, G. H., and I. Z. Gitas. 2004. “A semi-automated object-oriented Model for Burned Area Mapping in the Mediterranean Region Using Landsat-TM Imagery.” International Journal of Wildland Fire 13 (3): 367–376. doi:10.1109/LGRS.2018.2888641.
  • Mpakairi, K. S., H. Ndaimani, and B. Kavhu. 2020. “Exploring the Utility of Sentinel-2 MSI Derived Spectral Indices in Mapping Burned Areas in Different land-cover Types.” Scientific African 10: e00565. doi:10.1016/j.rse.2016.08.023.
  • Navarro, G., I. Caballero, G. Silva, P.-C. Parra, Á. Vázquez, and R. Caldeira. 2017. “Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery.” Int. J. Appl. Earth Obs. Geoinf 58: 97–106. doi:10.1016/j.jag.2017.02.003.
  • OTB Homepage. 2021. Accessed March 19. https://www.orfeo-toolbox.org/
  • Otón, G., R. Ramo, J. Lizundia-Loiola, and E. Chuvieco. 2019. “Global Detection of long-term (1982-2017) Burned Area with AVHRR-LTDR Data.” Remote Sensing 11 (18): 2079. doi:10.3390/rs11182079.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–2830.
  • Pepe, A., D. Stroppiana, F. Calo, P. Imperatore, L. Boschetti, C. Bignami, and P. A. Brivio. 2018. “Exploitation of Copernicus Sentinels Data for Sensing Fire-Disturbed Vegetated Areas.“ IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2018, (IEEE), Valencia, Spain, 7593–7596. doi:10.1109/IGARSS.2018.8518272.
  • Pereira, A. A., R. Libonati, D. Oom, L. M. C. Tavares, and J. M. Pereira. 2017. “ Avaliação de técnicas de compósitos multitemporais em imagens PROBA-V para o mapeamento de áreas queimadas.“ XVIII SBSR - Simpósio Brasileiro de Sensoriamento Remoto, 28- 31 May 2017, Santos, Brasil. https://proceedings.science/sbsr/papers/avaliacao-de-tecnicas-de-compositos-multitemporais-em-imagens-proba-v-para-o-mapeamento-de-areas-queimadas.
  • Pereira, A. A., J. M. C. Pereira, R. Libonati, D. Oom, and L. M. T. Carvalho. 2016. “Multitemporal Image Compositing Evaluation Algorithms for PROBA-V Burned Area Analysis.“ Proba-V Symposium, 26 - 28 January 2016, Ghent, Belgium.
  • Pereira, J. M. C., A. C. L. Sá, A. M. O. Sousa, J. M. N. Silva, T. N. Santos, and J. M. B. Carreiras. 1999. “ Spectral Characterisation and Discrimination of Burnt Areas. Remote Sensing of Large Wildfires.“ Berlin, Heidelberg: Springer, 123–138. doi:10.1007/978-3-642-60164-4_7.
  • Periasamy, S. 2018. “Significance of Dual Polarimetric Synthetic Aperture Radar in Biomass Retrieval: An Attempt on Sentinel-1.” Remote Sensing of Environment 217: 537–549. doi:10.1016/j.rse.2018.09.003.
  • Pipia, L., J. Muñoz-Marí, E. Amin, S. Belda, G. Camps-Valls, and J. Verrelst. 2019. “Fusing Optical and SAR Time Series for LAI Gap Fillingwith Multioutput Gaussian Processes.” Remote Sensing of Environment 235: 111452. doi:10.1016/j.rse.2019.111452.
  • Polychronaki, A., and I. Z. Gitas. 2010. “The Development of an Operational Procedure for burned-area Mapping Using object-based Classification and ASTER Imagery.” International Journal of Remote Sensing 31 (4): 1113–1120. doi:10.1080/01431160903334497.
  • Polychronaki, A., and I. Z. Gitas. 2012. “Burned Area Mapping in Greece Using SPOT-4 HRVIR Images and object-based Image Analysis.” Remote Sensing 4 (2): 424–438. doi:10.3390/rs4020424.
  • Polychronaki, A., I. Z. Gitas, S. Veraverbeke, and A. Debien. 2013. “Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using object-based Classification.” Remote Sensing 5 (11): 5680–5701. doi:10.3390/rs5115680.
  • Pulvirenti, L., G. Squicciarino, E. Fiori, P. Fiorucci, L. Ferraris, D. Negro, A. Gollini, M. Severino, and S. Puca. 2020. “An Automatic Processing Chain for near real-time Mapping of Burned Forest Areas Using Sentinel-2 Data.” Remote Sensing 12 (4): 674. doi:10.3390/rs12040674.
  • Ql, J., and Y. Kerr. 1997. “On Current Compositing Algorithms.” Remote Sensing Reviews 15 (1–4): 235–256. doi:10.1080/02757259709532340.
  • Radoux, J., and P. Defourny. 2008. Quality Assessment of Segmentation Results Devoted to object-based Classification, In: Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sensing Applications, 257–271. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg.
  • Reid, C. E., M. Brauer, F. H. Johnston, M. Jerrett, J. R. Balmes, and C. T. Elliott. 2016. “Critical Review of Health Impacts of Wildfire Smoke Exposure.” Environmental Health Perspectives 124 (9): 1334–1343. doi:10.1289/ehp.1409277.
  • Richards, J. A. 2009. “The Radiation Framework.”Remote Sensing with ImagingRadar, 11-52. Berlin, Heidelberg:Springer-Verlag. doi:10.1007/978-3-642-02020-9.
  • Rodman, K. C., R. A. Andrus, T. T. Veblen, and S. J. Hart. 2021. “Remote Sensing of Environment Disturbance Detection in Landsat Time Series Is Influenced by Tree Mortality Agent and Severity, Not by Prior Disturbance.” Remote Sensing of Environment 254: 112244. doi:10.1016/j.rse.2020.112244.
  • Roteta, E., A. Bastarrika, M. Padilla, T. Storm, and E. Chuvieco. 2019. “Development of a Sentinel-2 Burned Area Algorithm: Generation of a Small Fire Database for sub-Saharan Africa.” Remote Sensing of Environment 222: 1–17. doi:10.1016/j.rse.2018.12.011.
  • Ruiz-Ramos, J., A. Marino, and C. P. Boardman. 2018. “Using Sentinel 1-SAR for Monitoring Long Term Variation in Burnt Forest Areas.” Int. Geosci. Remote Sens. Symp, July. 4901–4904. doi:10.1109/IGARSS.2018.8518960.
  • Saatchi, S. 2019. “SAR Methods for Mapping and Monitoring Forest Biomass.” In The SAR Handbook. Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA, 207–247. doi:10.25966/nr2c-s697.
  • Sali, M., E. Piaser, M. Boschetti, P. A. Brivio, G. Sona, G. Bordogna, and D. Stroppiana. 2021. “A Burned Area Mapping Algorithm for Sentinel-2 Data Based on Approximate Reasoning and Region Growing.” Remote Sensing 13 (11): 2214. doi:10.3390/rs13112214.
  • San-Miguel-Ayanz, J., T. Durrant, R. Boca, G. Libertà, A. Branco, D. de Rigo, D. Ferrari, et al. 2018. “Forest Fires in Europe, Middle East and North Africa 2017.” Publications Office of the European Union. doi:10.2760/27815.
  • Schepers, L., B. Haest, S. Veraverbeke, T. Spanhove, J. Borre, and R. Vanden, Goossens. 2014. “Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX).” Remote Sensing 6 (3): 1803–1826. doi:10.3390/rs6031803.
  • Sertel, E., and U. Alganci. 2016. “Comparison of Pixel and object-based Classification for Burned Area Mapping Using SPOT-6 Images. Geomatics, Nat.” Geomatics, Natural Hazards and Risk 7 (4): 1198–1206. doi:10.1080/19475705.2015.1050608.
  • Setzer, A. W., and M. C. Pereira. 1991. “Amazonia Biomass Burnings in 1987 and an Estimate of Their Tropospheric Emissions.” Ambio. doi:10.2307/4313765.
  • Shimabukuro, Y. E., J. Miettinen, R. Beuchle, R. C. Grecchi, D. Simonetti, and F. Achard. 2015. “Estimating Burned Area in Mato Grosso, Brazil, Using an Object-Based Classification Method on a Systematic Sample of Medium Resolution Satellite Images.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (9): 4502–4508. doi:10.1109/JSTARS.2015.2464097.
  • Shufelt, J. A. 1999. “Performance Evaluation and Analysis of Monocular Building Extraction from Aerial Imagery.” IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (4): 311–326. doi:10.1109/34.761262.
  • Silva, J. M. N., J. F. C. L. Cadima, J. M. C. Pereira, and J. M. Grégoire. 2004. “Assessing the Feasibility of a Global Model for multi-temporal Burned Area Mapping Using SPOT-VEGETATION Data.” International Journal of Remote Sensing 25 (22): 4889–4913. doi:10.1080/01431160412331291251.
  • Silva, J. M. N., M. V. Moreno, Y. Le Page, D. Oom, I. Bistinas, and J. M. C. Pereira. 2019. “Spatiotemporal Trends of Area Burnt in the Iberian Peninsula, 1975–2013.” Regional Environmental Change 19 (2): 515–527. doi:10.1007/s10113-018-1415-6.
  • Small, D. 2011. “Flattening Gamma: Radiometric Terrain Correction for SAR Imagery.” IEEE Transactions on Geoscience and Remote Sensing 49 (8): 3081–3093. doi:10.1109/TGRS.2011.2120616.
  • Smiraglia, D., F. Filipponi, S. Mandrone, A. Tornato, and A. Taramelli. 2020. “Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images.” Remote Sensing 12 (11): 1862. doi:10.3390/rs12111862.
  • Smith, A. M. S., M. J. Wooster, N. A. Drake, F. M. Dipotso, M. J. Falkowski, and A. T. Hudak. 2005. “Testing the Potential of Multispectral Remote Sensing for Retrospectively Estimating Fire Severity in African Savannahs.” Remote Sensing of Environment 97 (1): 92–115. doi:10.1016/j.rse.2005.04.014.
  • Sokolova, M., N. Japkowicz, and S. Szpakowicz. 2006. “Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluatio Discriminant.“ 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 1015-1021. Berlin, Heidelberg: Springer. doi:10.1007/11941439_114.
  • Sousa, A. M. O., J. M. C. Pereira, and J. M. N. Silva. 2003. “Evaluating the Performance of Multitemporal Image Compositing Algorithms for Burned Area Analysis.” International Journal of Remote Sensing 24 (6): 1219–1236. doi:10.1080/01431160110114466.
  • Storey, E. A., K. R. Lee West, and D. A. Stow. 2021. “Utility and Optimization of LANDSAT-derived Burned Area Maps for Southern California.” International Journal of Remote Sensing 42 (2): 486–505. doi:10.1080/01431161.2020.1809741.
  • Stroppiana, D., R. Azar, F. Calò, A. Pepe, P. Imperatore, M. Boschetti, J. M. N. Silva, P. A. Brivio, and R. Lanari. 2015. “Integration of Optical and SAR Data for Burned Area Mapping in Mediterranean Regions.” Remote Sensing 7 (2): 1320–1345. doi:10.3390/rs70201320.
  • Stroppiana, D., S. Pinnock, J. M. C. Pereira, and J.-M. Grégoire. 2002. “Radiometric Analysis of SPOT-VEGETATION Images for Burnt Area Detection in Northern Australia.” Remote Sensing of Environment 82 (1): 21–37. doi:10.1016/S0034-4257(02).
  • Szigarski, C., T. Jagdhuber, M. Baur, C. Thiel, M. Parrens, J. Wigneron, M. Piles, and D. Entekhabi. 2018. “Analysis of the Radar Vegetation Index and Potential Improvements.” Remote Sensing 10 (1776): 1–15. doi:10.3390/rs10111776.
  • Tanase, M. A., M. A. Belenguer-Plomer, E. Roteta, A. Bastarrika, J. Wheeler, Á. Fernández-Carrillo, K. Tansey, et al. 2020. “Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa.” Remote Sensing 12 (2): 334. doi:10.3390/rs12020334.
  • Tanase, M., J. de la Riva, M. Santoro, F. Pérez-Cabello, and E. Kasischke. 2011. “Sensitivity of SAR Data to post-fire Forest Regrowth in Mediterranean and Boreal Forests.” Remote Sensing of Environment 115 (8): 2075–2085. doi:10.1016/j.rse.2011.04.009.
  • Tanase, M. A., M. Santoro, J. De La Riva, F. Prez-Cabello, and T. Le Toan. 2010a. “Sensitivity of X-, C-, and L-band SAR Backscatter to Burn Severity in Mediterranean Pine Forests.” IEEE Transactions on Geoscience and Remote Sensing 48 (10): 3663–3675. doi:10.1109/TGRS.2010.2049653.
  • Tanase, M. A., M. Santoro, U. Wegmüller, J. de la Riva, and F. Pérez-Cabello. 2010b. “. Properties of X-, C- and L-band repeat-pass Interferometric SAR Coherence in Mediterranean Pine Forests Affected by Fires.” Remote Sensing of Environment 114 (10): 2182–2194. doi:10.1016/j.rse.2010.04.021.
  • Tansey, K., J.-M. Grégoire, E. Binaghi, L. Boschetti, P. A. Brivio, D. Ershov, S. Flasse, et al. 2004b. “A Global Inventory of Burned Areas at 1 Km Resolution for the Year 2000 Derived from Spot Vegetation Data.” Clim. Change 67: 345–377. doi:10.1007/s10584-004-2800-3.
  • Tansey, K., J. Gre, D. Stroppiana, M. C. Pereira, L. Boschetti, M. Maggi, P. A. Brivio, and R. Fraser. 2004a. “Vegetation Burning in the Year 2000.” Global Burned Area Estimates from SPOT VEGETATION Data 109: 1–22. doi:10.1029/2003JD003598.
  • Trudel, M., F. Charbonneau, and R. Leconte. 2012. “Using RADARSAT-2 Polarimetric and ENVISAT-ASAR dual-polarization Data for Estimating Soil Moisture over Agricultural Fields.” Can. J. Remote Sens 38: 514–527. doi:10.5589/m12-043.
  • Vanderhoof, M. K., T. J. Hawbaker, C. Teske, A. Ku, J. Noble, and J. Picotte, 2021. Mapping Wetland Burned Area from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016 – 2019) 8
  • Van, Shoaie, D. D., S. Leeuwen, and T. Van, Veraverbeke. 2021. “Spectral Signature Analysis of False Positive Burned Area Detection from Agricultural Harvests Using Sentinel-2 Data.” Int. J. Appl. Earth Obs. Geoinf 97: 102296. doi:10.1016/j.jag.2021.102296.
  • Verbyla, D. L. V., E. S. K. Kasischke, and E. E. H. Hoy, 2008 . Seasonal and Topographic Effects on Estimating Fire Severity from Landsat TM/ETM + Data 527–534.
  • Verhegghen, A., H. Eva, G. Ceccherini, F. Achard, V. Gond, S. Gourlet-Fleury, and P. O. Cerutti. 2016. “The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests.” Remote Sens 8 (12): 1–22. doi:10.1016/j.rse.2011.04.009.
  • Zhang, P., A. Nascetti, Y. Ban, and M. Gong. 2019. “An Implicit Radar Convolutional Burn Index for Burnt Area Mapping with Sentinel-1 C-band SAR Data.” ISPRS Journal of Photogrammetry and Remote Sensing 158: 50–62. doi:10.1016/j.isprsjprs.2019.09.013.