849
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Berries Pomace Valorization: From Waste to Potent Antioxidants and Emerging Skin Prebiotics

, , , , , & show all

References

  • Barbulova, A., G. Colucci, and F. Apone. 2015. New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics 2(2):82–92. doi: 10.3390/cosmetics2020082.
  • Boroja, T., V. Mihailović, J. Katanić, S.P. Pan, S. Nikles, P. Imbimbo, D.M. Monti, N. Stanković, M.S. Stanković, and R. Bauer. 2018. The biological activities of roots and aerial parts of Alchemilla vulgaris L. S. Afr. J. Bot. 116:175–184. doi: 10.1016/j.sajb.2018.03.007.
  • Byrd, A.L., Y. Belkaid, and J.A. Segre. 2018. The human skin microbiome. Nat. Rev. Microbiol. 16(3):143–155. doi: 10.1038/nrmicro.2017.157.
  • Caponio, G.R., F. Minervini, G. Tamma, G. Gambacorta, and M. De Angelis. 2023. Promising application of grape pomace and its agri-food valorization: Source of bioactive molecules with beneficial effects. Sustain.(switzerland) 15(11):9075. doi: 10.3390/su15119075.
  • Darwish, A.G., P.R. Das, A. Ismail, P. Gajjar, S.P. Balasubramani, M.B. Sheikh, V. Tsolova, S.M. Sherif, and I. El-Sharkawy. 2021. Untargeted metabolomics and antioxidant capacities of muscadine grape genotypes during berry development. Antioxidants 10(6):914. doi: 10.3390/antiox10060914.
  • De Lima Cherubim, D.J., C.V. Buzanello Martins, L. Oliveira Fariña, and R.A. da Silva de Lucca. 2019. Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 19(1):33–37. doi: 10.1111/jocd.13093.
  • Desentis-Mendoza, R.M., H. Hernandez-Sanchez, A. Moreno, C. Rojas, L. Chel-Guerrero, J. Tamariz, and M.E. Jaramillo-Flores. 2006. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from ustilago maydis. Biomacromolecules 7(6):1845–1854. doi: 10.1021/bm060159p.
  • Di Lodovico, S., F. Gasparri, E. Di Campli, P. Di Fermo, S. D’Ercole, L. Cellini, and M. Di Giulio. 2020. Prebiotic combinations effects on the colonization of staphylococcal skin strains. Microorganisms 9(1):37. doi: 10.3390/microorganisms9010037.
  • Edslev, S., T. Agner, and P. Andersen. 2020. Skin microbiome in atopic dermatitis. Acta Derm. Venereol. 100(12):adv00164. doi: 10.2340/00015555-3514.
  • Faraone, I., D. Rai, L. Chiummiento, E. Fernandez, A. Choudhary, F. Prinzo, and L. Milella. 2018. Antioxidant activity and phytochemical characterization of Senecio clivicolus wedd. Molecules 23(10):2497. doi: 10.3390/molecules23102497.
  • Fogarasi, M., M.-I. Socaciu, C.-D. Sălăgean, F. Ranga, A.C. Fărcaș, S.A. Socaci, C. Socaciu, D. Țibulcă, S. Fogarasi, and C.A. Semeniuc. 2021. Comparison of different extraction solvents for characterization of antioxidant potential and polyphenolic composition in boletus edulis and cantharellus cibarius mushrooms from Romania. Molecules 26(24):7508. doi: 10.3390/molecules26247508.
  • Formagio, A., C. Volobuff, M. Santiago, C. Cardoso, M. Vieira, and Z. Valdevina Pereira. 2014. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 3(4):745–757. doi: 10.3390/antiox3040745.
  • Gasparrini, M., T. Forbes-Hernandez, S. Afrin, P. Reboredo-Rodriguez, D. Cianciosi, B. Mezzetti, J. Quiles, S. Bompadre, M. Battino, and F. Giampieri. 2017. Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients 9(6):605. doi: 10.3390/nu9060605.
  • Georgescu, C., A. Frum, L.I. Virchea, A. Sumacheva, M. Shamtsyan, F.G. Gligor, N.K. Olah, E. Mathe, and M. Mironescu. 2022. Geographic variability of berry phytochemicals with antioxidant and antimicrobial properties. 2022. Molecules 27(15):4986. doi: 10.3390/molecules27154986.
  • Giovagnoli-Vicuña, C., P. Velásquez, G. Montenegro, J. Espejo, M. Gómez, G. Cabrera-Barjas, and A. Giordano. 2021. Nutritional and antioxidant potential of Chilean native fruits: Lleuque (prumnopitys andina) and copihue (lapageria rosea). J. Food Nutr. Res 60:352–362.
  • Iqbal, A., P. Schulz, and S.S.H. Rizvi. 2021. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present insights and future challenges. Food Biosci. 44:101384. doi: 10.1016/j.fbio.2021.101384.
  • Jadhaw, S.B., and R.S. Singhal. 2014. Laccase-gum Arabic conjugate for preparation of water-soluble oligomer of catehin with enhances antioxidant activity. Food Chem. 150:9–16. doi: 10.1016/j.foodchem.2013.10.127.
  • Kavela, E.T.A., L. Szalóki-Dorkó, and M. Máté. 2023. The efficiency of selected green solvents and parameters for polyphenol extraction from chokeberry (aronia melanocarpa (michx)) pomace. Foods 12(19):3639. doi: 10.3390/foods12193639.
  • Khatri, D., and S.B.B. Chhetri. 2020. Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. Biomed. Res. Int. 2020:1–7. doi: 10.1155/2020/7296859.
  • Kim, J.S. 2018. Antioxidant activities of selected berries and their free, esterified, and insoluble-bound phenolic acid contents. Prev. Nutr. Food Sci 23(1):35–45. doi: 10.3746/pnf.2018.23.1.35.
  • Kim, J., B.E. Kim, K. Ahn, and D.Y.M. Leung. 2019. Interactions between atopic dermatitis and staphylococcus aureus infection: Clinical implications. Allergy Asthma Immunol. Res. 11(5):593–603. doi: 10.4168/aair.2019.11.5.593.
  • Kotha, R.R., F.S. Tareq, E. Yildiz, and D.L. Luthria. 2022. Oxidative stress and antioxidants—a critical review on in vitro antioxidant assays. Antioxidants 11(12):2388. doi: 10.3390/antiox11122388.
  • Krutmann, J. 2009. Pre- and probiotics for human skin. J. Dermatol. Sci. 54(1):1–5. doi: 10.1016/j.jdermsci.2009.01.002.
  • Maisetta, G., G. Batoni, P.E. Caboni, S. Rinaldi, and A.C. Zucca. 2019. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant cytinus. BMC Complement Altern Med 19(1):82. doi: 10.1186/s12906-019-2487-7.
  • Makarewicz, M., I. Drożdż, T. Tarko, and A. Duda-Chodak. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 10(2):188. doi: 10.3390/antiox10020188.
  • Marjanovic, A., J. Djedjibegovic, A. Lugusic, M. Sober, and L. Saso. 2021. Multivariate analysis of polyphenolic content and in vitro antioxidant capacity of wild and cultivated berries from Bosnia and Herzegovina. Sci. Rep. 11(1):19259. doi: 10.1038/s41598-021-98896-8.
  • Martel, J., D.M. Ojcius, Y.-F. Ko, and J.D. Young. 2020. Phytochemicals as prebiotics and biological stress inducers. Trends Biochem. Sci. 45(6):462–471. doi: 10.1016/j.tibs.2020.02.008.
  • Milutinović, M., N. Radovanović, M. Ćorović, S. Šiler-Marinković, M. Rajilić-Stojanović, and S. Dimitrijević-Branković. 2015. Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind. Crops Prod. 77:333–341. doi: 10.1016/j.indcrop.2015.09.007.
  • Neha, K., M.R. Haider, A. Pathak, and M.S. Yar. 2019. Medicinal prospects of antioxidants: A review. Eur J Med Chem 178:687–704. doi: 10.1016/j.ejmech.2019.06.010.
  • Nirmal, N.P., A.C. Khanashyam, A.S. Mundanat, K. Shah, K.S. Babu, P. Thorakkattu, F. Al-Asmari, and R. Pandiselvam. 2023. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods 12(3):556. doi: 10.3390/foods12030556.
  • Osorio, L.L.D.R., E. Flórez-López, and C.D. Grande-Tovar. 2021. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 26(2):515. doi: 10.3390/molecules26020515.
  • Pachołek, B., K. Krawczyk, and E. Żak. 2014. Potential use of dried fruit pomaces to create sensory properties and antioxidant activity of fruit teas. Towaroznawcze Problemy Jakości. Polish J. commod. sci 3:77–84.
  • Pap, N., D. Reshamwala, R. Korpinen, P. Kilpeläinen, M. Fidelis, M.M. Furtado, A.S. Sant’ana, M. Wen, L. Zhang, J. Hellström, et al. 2021. Toxicological and bioactivity evaluation of blackcurrant press cake, sea buckthorn leaves and bark from scots pine and Norway spruce extracts under a green integrated approach. Food Chem. Toxicol. 153:112284. doi: 10.1016/j.fct.2021.112284.
  • Paunović, S., P. Mašković, and M. Milinković. 2022. Phytochemical and antimicrobial profile of black currant berries and leaves. Acta. Agric. Serb. 27(53):25–29. doi: 10.5937/AASer2253025P.
  • Petrov, A., M. Ćorović, A. Milivojević, M. Simović, K. Banjanac, R. Pjanović, and D. Bezbradica. 2022. Prebiotic effect of galacto‐oligosaccharides on the skin microbiota and determination of their diffusion properties. Int J Cosmet Sci 44(3):309–319. doi: 10.1111/ics.12778.
  • Petrovic, M., D. Suznjevic, F. Pastor, M. Veljovic, L. Pezo, M. Antic, and S. Gorjanovic. 2016. Antioxidant capacity determination of complex samples and individual phenolics - multilateral approach. Comb. Chem. High Throughput Screen. 19(1):58–65. doi: 10.2174/1386207318666151102094227.
  • Pieszka, M., P. Gogol, M. Pietras, and M. Pieszka. 2015. Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Ann. Anim. Sci. 15(2):475–491. doi: 10.2478/aoas-2014-0072.
  • Plainfossé, H., M. Trinel, G. Verger-Dubois, S. Azoulay, P. Burger, and X. Fernandez. 2020. Valorisation of ribes nigrum L. Pomace, an agri-food by-product to design a New Cosmetic Active. Cosmetics 7(3):56. doi: 10.3390/cosmetics7030056.
  • Pukalskienė, M., A. Pukalskas, L. Dienaitė, S. Revinytė, C.V. Pereira, A.A. Matias, and P.R. Venskutonis. 2021. Recovery of bioactive compounds from strawberry (fragaria × ananassa) pomace by conventional and pressurized liquid extraction and assessment their bioactivity in human cell cultures. Foods 10(8):1780. doi: 10.3390/foods10081780.
  • Rajha, H.N., A. Paule, G. Aragonès, M. Barbosa, C. Caddeo, E. Debs, R. Dinkova, G.P. Eckert, A. Fontana, P. Gebrayel, et al. 2022. Recent advances in research on polyphenols: Effects on microbiota, metabolism, and health. Mol. Nutr. Food Res. 66(1):e2100670. doi: 10.1002/mnfr.202100670.
  • Russo, D., P. Valentão, P. Andrade, E. Fernandez, and L. Milella. 2015. Evaluation of antioxidant, antidiabetic and anticholinesterase activities of smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int. J. Mol. Sci. 16(8):17696–17718. doi: 10.3390/ijms160817696.
  • Severn, M.M., and A.R. Horswill. 2022. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat. Rev. Microbiol. 21(2):97–111. doi: 10.1038/s41579-022-00780-3.
  • Struck, S., M. Plaza, C. Turner, and H. Rohm. 2016. Berry pomace – a review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol 51(6):1305–1318. doi: 10.1111/ijfs.13112.
  • Su, J., L. Jin, R. Yang, Y. Liang, S.H. Nile, and G. Kai. 2023. Comparative studies on selection of high polyphenolic containing Chinese raspberry for evaluation of antioxidant and cytotoxic potentials. J. Agric. Food. Res. 12:100603. doi: 10.1016/j.jafr.2023.100603.
  • Sun, M., Y. Deng, X. Cao, L. Xiao, Q. Ding, F. Luo, P. Huang, Y. Gao, M. Liu, and H. Zhao. 2022. Effects of natural polyphenols on skin and hair health: A review. Molecules 27(22):7832. doi: 10.3390/molecules27227832.
  • Sun, T., and S.A. Tanumihardjo. 2007. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 72(9):R159–R165. doi: 10.1111/j.1750-3841.2007.00552.x.
  • Tabart, J., C. Kevers, N. Dardenne, V. Schini-Kerth, A. Albert, J. Dommes, J.-O. Defraigne, and J. Pincemail. 2014. Deriving a global antioxidant score for commercial juices by multivariate graphical and scoring techniques: Applications to blackcurrant juice. Process. And Impact Antioxid. Beverages 301–307. doi: 10.1016/b978-0-12-404738-9.00030-1.
  • Todorovic, V., M. Milenkovic, B. Vidovic, Z. Todorovic, and S. Sobajic. 2017. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J. Food Sci. 82(4):1020–1027. doi: 10.1111/1750-3841.13672.
  • Vermerris, W., and R. Nicholson. 2009. Phenolic compound biochemistry. Isolation and identification of phenolic compounds, pp. 154–156. Dordrecht, Netherlands: Springer Dordrecht.
  • Willis, R.B., and P.R. Allen. 1998. Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst (Lond) 123(3):435–439. doi: 10.1039/a706862j.
  • Woo, T.E., and C.D. Sibley. 2020. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis. J. Am. Acad. Dermatol. 82(1):222–228. doi: 10.1016/j.jaad.2019.08.078.
  • Yang, Y., L. Qu, I. Mijakovic, and Y. Wei. 2022. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb. Cell Fact. 21(1):176. doi: 10.1186/s12934-022-01901-6.
  • Yao, J., J. Chen, J. Yang, Y. Hao, Y. Fan, C. Wang, and N. Li. 2021. Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. LWT 135:109995. doi: 10.1016/j.lwt.2020.109995.
  • Yao, Y., and B. Xu. 2022. Skin health promoting effects of natural polysaccharides and their potential application in the cosmetic industry. Polysaccharides 3(4):818–830. doi: 10.3390/polysaccharides3040048.
  • Zhou, H., L. Shi, Y. Ren, X. Tan, W. Liu, and Z. Liu. 2020. Applications of human skin microbiota in the cutaneous disorders for ecology-based therapy. Front Cell Infect Microbiol 10:570261. doi: 10.3389/fcimb.2020.570261.