1,916
Views
19
CrossRef citations to date
0
Altmetric
VIEWS AND COMMENTARIES

ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally

, &
Pages 1944-1948 | Received 02 Oct 2014, Accepted 11 Aug 2015, Published online: 27 Oct 2015

References

  • Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4:517–29; PMID:12838335; http://dx.doi.org/10.1038/nrm1155
  • Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87:593–658; PMID:17429043; http://dx.doi.org/10.1152/physrev.00035.2006
  • Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 2014; 1843:2164–83; PMID:24642269; http://dx.doi.org/10.1016/j.bbamcr.2014.03.007
  • Berridge MJ. Calcium microdomains: organization and function. Cell Calcium 2006; 40:405–12; PMID:17030366; http://dx.doi.org/10.1016/j.ceca.2006.09.002
  • Decuypere JP, Bultynck G, Parys JB. A dual role for Ca2+ in autophagy regulation. Cell Calcium 2011; 50:242–50; PMID:21571367; http://dx.doi.org/10.1016/j.ceca.2011.04.001
  • Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgó J, Díaz J, Lavandero S, Harper F, et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 2007; 14:1029–39; PMID:17256008
  • Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006–17; PMID:19325567; http://dx.doi.org/10.1038/cdd.2009.34
  • Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010; 142:270–83; PMID:20655468; http://dx.doi.org/10.1016/j.cell.2010.06.007
  • Khan MT, Joseph SK. Role of inositol trisphosphate receptors in autophagy in DT40 cells. J Biol Chem 2010; 285:16912–20; PMID:20308071; http://dx.doi.org/10.1074/jbc.M110.114207
  • Wong A, Grubb DR, Cooley N, Luo J, Woodcock EA. Regulation of autophagy in cardiomyocytes by Ins(1,4,5)P3 and IP3-receptors. J Mol Cell Cardiol 2013; 54:19–24; PMID:23137780; http://dx.doi.org/10.1016/j.yjmcc.2012.10.014
  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101–11; PMID:16186256; http://dx.doi.org/10.1083/jcb.200504035
  • Lam D, Kosta A, Luciani MF, Golstein P. The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 2008; 19:691–700; PMID:18077554; http://dx.doi.org/10.1091/mbc.E07-08-0823
  • Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al. Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 2011; 7:1472–89; PMID:22082873; http://dx.doi.org/10.4161/auto.7.12.17909
  • Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, Bultynck G, Parys JB. mTOR-Controlled autophagy requires intracellular Ca2+ signaling. PloS One 2013; 8:e61020; PMID:23565295; http://dx.doi.org/10.1371/journal.pone.0061020
  • Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007; 25:193–205; PMID:17244528; http://dx.doi.org/10.1016/j.molcel.2006.12.009
  • Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 2010; 22:914–25; PMID:20114074; http://dx.doi.org/10.1016/j.cellsig.2010.01.015
  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295–305; PMID:18391949; http://dx.doi.org/10.1038/nchembio.79
  • Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42:731–43; PMID:21700220; http://dx.doi.org/10.1016/j.molcel.2011.04.024
  • Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268:26107–12; PMID:8253727
  • Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, et al. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 2013; 9:1475–90; PMID:23970164; http://dx.doi.org/10.4161/auto.25900
  • Zhao M, Klionsky DJ. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 2011; 13:119–20; PMID:21284977; http://dx.doi.org/10.1016/j.cmet.2011.01.009
  • Messai Y, Noman MZ, Hasmim M, Janji B, Tittarelli A, Boutet M, Baud V, Viry E, Billot K, Nanbakhsh A, et al. ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res 2014; 74:6820–32; PMID:25297632; http://dx.doi.org/10.1158/0008-5472.CAN-14-0303
  • Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Matsumoto N, Hisatsune C, Nakamura T, Mikoshiba K. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2014; 111(38):E3966–75; PMID:25201980; http://dx.doi.org/10.1073/pnas.1409730111
  • Jia W, Pua HH, Li QJ, He YW. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 2011; 186:1564–74; PMID:21191072; http://dx.doi.org/10.4049/jimmunol.1001822
  • Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim et Biophys Acta 2014; 1837:461–9; PMID:24211533; http://dx.doi.org/10.1016/j.bbabio.2013.10.015
  • Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CM, Lasorsa FM, Pinton P. Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 2013; 9:1677–86; PMID:24121707; http://dx.doi.org/10.4161/auto.24795
  • Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 2006; 175:901–11; PMID:17178908; http://dx.doi.org/10.1083/jcb.200608073
  • Xu Q, Reed JC. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1:337–46; PMID:9660918; http://dx.doi.org/10.1016/S1097-2765(00)80034-9
  • Bultynck G, Kiviluoto S, Henke N, Ivanova H, Schneider L, Rybalchenko V, Luyten T, Nuyts K, De Borggraeve W, Bezprozvanny I, et al. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem 2012; 287:2544–57; PMID:22128171; http://dx.doi.org/10.1074/jbc.M111.275354
  • Bultynck G, Kiviluoto S, Methner A. Bax inhibitor-1 is likely a pH-sensitive calcium leak channel, not a H+/Ca2+ exchanger. Sci Signal 2014; 7:pe22; PMID:25227609; http://dx.doi.org/10.1126/scisignal.2005764
  • Kiviluoto S, Schneider L, Luyten T, Vervliet T, Missiaen L, De Smedt H, Parys JB, Methner A, Bultynck G. Bax inhibitor-1 is a novel IP3 receptor-interacting and -sensitizing protein. Cell Death Dis 2012; 3:e367; PMID:22875004; http://dx.doi.org/10.1038/cddis.2012.103
  • Sano R, Hou YC, Hedvat M, Correa RG, Shu CW, Krajewska M, Diaz PW, Tamble CM, Quarato G, Gottlieb RA, et al. Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy. Genes Dev 2012; 26:1041–54; PMID:22588718; http://dx.doi.org/10.1101/gad.184325.111
  • Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80:1066–75; PMID:21896713; http://dx.doi.org/10.1124/mol.111.071761
  • Morgan AJ, Davis LC, Wagner SK, Lewis AM, Parrington J, Churchill GC, Galione A. Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 2013; 200:789–805; PMID:23479744; http://dx.doi.org/10.1083/jcb.201204078
  • Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S. Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 2013; 126:60–6; PMID:23108667; http://dx.doi.org/10.1242/jcs.118836
  • Lopez-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW. Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 2013; 126:289–300; PMID:23097044; http://dx.doi.org/10.1242/jcs.116103
  • Lu Y, Hao BX, Graeff R, Wong CW, Wu WT, Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 2013; 288:24247–63; PMID:23836916; http://dx.doi.org/10.1074/jbc.M113.484253
  • Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288–99; PMID:25720963; http://dx.doi.org/10.1038/ncb3114
  • Ghislat G, Knecht E. New Ca2+-dependent regulators of autophagosome maturation. Commun Integr Biol 2012; 5:308–11; PMID:23060949; http://dx.doi.org/10.4161/cib.20076
  • Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, Rong YP, Molitoris JK, Lam M, Ryder C, et al. Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 2011; 117:2924–34; PMID:21193695; http://dx.doi.org/10.1182/blood-2010-09-307405
  • Akl H, Monaco G, La Rovere R, Welkenhuyzen K, Kiviluoto S, Vervliet T, Molgó J, Distelhorst CW, Missiaen L, Mikoshiba K, et al. IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis 2013; 4:e632; PMID:23681227; http://dx.doi.org/10.1038/cddis.2013.140