3,108
Views
32
CrossRef citations to date
0
Altmetric
Research Papers - Basic Science

iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis

, , , , , , , , , , & show all
Pages 598-618 | Received 05 Aug 2016, Accepted 28 Dec 2017, Published online: 21 Feb 2018

References

  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721. doi:10.1126/science.290.5497.1717. PMID:11099404
  • Thompson AR, Vierstra RD. Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol. 2005;8:165–173. doi:10.1016/j.pbi.2005.01.013. PMID:15752997
  • Han S, Yu B, Wang Y, et al. Role of plant autophagy in stress response. Protein Cell. 2011;2:784–791. doi:10.1007/s13238-011-1104-4. PMID:22058033
  • Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol. 2012;63:215–237. doi:10.1146/annurev-arplant-042811-105441. PMID:22242963
  • Liu Y, Schiff M, Czymmek K, et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell. 2005;121:567–577. doi:10.1016/j.cell.2005.03.007. PMID:15907470
  • Andrew PH, Dinesh-Kumar SP. What can plant autophagy do for an innate immune response? Annu Rev Phytopathol. 2011;49:557–576. doi:10.1146/annurev-phyto-072910-095333. PMID:21370973
  • Lenz HD, Haller E, Melzer E, et al. Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy. 2011;7:773–774. doi:10.4161/auto.7.7.15535. PMID:21460628
  • Zhou J, Yu J-Q, Chen Z. The perplexing role of autophagy in plant innate immune responses. Mol Plant Pathol. 2014;15:637–645. doi:10.1111/mpp.12118. PMID:24405524
  • Hofius D, Schultz-Larsen T, Joensen J, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell. 2009;137:773–783. doi:10.1016/j.cell.2009.02.036. PMID:19450522
  • Wang Y, Wu Y, Tang D. The autophagy gene, ATG18a, plays a negative role in powdery milde resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav. 2011;6:1408–1410. doi:10.4161/psb.6.9.16967. PMID:21847024
  • Wang Y, Nishimura MT, Zhao T, et al. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 2011;68:74–87. doi:10.1111/j.1365-313X.2011.04669.x. PMID:21645148
  • Yoshimoto K. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling. Autophagy. 2010;6:192–193. doi:10.4161/auto.6.1.10843. PMID:20023431
  • Yoshimoto K, Jikumaru Y, Kamiya Y, et al. Autophagy negatively regulates cell death by controlling NPR-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell. 2009;21:2914–2927. doi:10.1105/tpc.109.068635. PMID:19773385
  • Patel S, Dinesh-Kumar SP. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy. 2008;4:20–27. doi:10.4161/auto.5056. PMID:17932459
  • Lai Z, Wang F, Zheng Z, et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 2011;66:953–968. doi:10.1111/j.1365-313X.2011.04553.x. PMID:21395886
  • Lenz HD, Haller E, Melzer E, et al Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011;66:818–830. doi:10.1111/j.1365-313X.2011.04546.x. PMID:21332848
  • Han S, Wang Y, Zheng X, et al. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate Autophagy and immunity in Nicotiana benthamiana. Plant Cell. 2015;27:1316–1331. doi:10.1105/tpc.114.134692. PMID:25829441
  • Zimmermann AC, Zarei M, Eiselein S, et al. Quantitative proteomics for the analysis of spatio-temporal protein dynamics during autophagy. Autophagy. 2010;6:1009–1016. doi:10.4161/auto.6.8.12786. PMID:20603599
  • Yadeta K, Thomma B. The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci. 2013;4:97. doi:10.3389/fpls.2013.00097. PMID:23630534
  • Xu RQ, Blanvillain S, Feng JX, et al. AvrAC(Xcc8004), a type III Effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol. 2008;190:343–355. doi:10.1128/JB.00978-07. PMID:17951377
  • Kawchuk LM, Hachey J, Lynch DR, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA. 2001;98:6511–6515. doi:10.1073/pnas.091114198. PMID:11331751
  • Zhang Z, Fradin E, de Jonge R, et al. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol Plant Microbe Interact. 2013;26:182–190. doi:10.1094/MPMI-06-12-0161-R. PMID:22991998
  • Klosterman SJ, Atallah ZK, Vallad GE, et al. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol. 2009;47:39–62. doi:10.1146/annurev-phyto-080508-081748. PMID:19385730
  • Pegg G, Brady B. Verticillium wilts. Wallingford (Oxfordshire): CABI Publishing; 2002.
  • Schnathorst WC. Life cycle and epidemiology of Verticillium. In: Mace ME, Bell AA, Beckman CH, editors. Fungal wilt diseases of plants. New York (NY): Academic Press; 1981. p. 81–111.
  • Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol. 2006;7:71–86. doi:10.1111/j.1364-3703.2006.00323.x. PMID:20507429
  • Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics. 2008;178:1339–1353. doi:10.1534/genetics.107.086199. PMID:18245858
  • Yoshimoto K, Hanaoka H, Sato S, et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell. 2004;16:2967–2983. doi:10.1105/tpc.104.025395. PMID:15494556
  • Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 2005;42:598–608. doi:10.1111/j.1365-313X.2005.02396.x. PMID:15860017
  • Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy. 2013;9:424–425. doi:10.4161/auto.22931. PMID:23321721
  • Wang FX, Ma YP, Yang CL, et al. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics. 2011;11:4296–4309. doi:10.1002/pmic.201100062. PMID:21928292
  • Parker J, Koh J, Yoo MJ, et al. Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics. 2013;13:1934–1946. doi:10.1002/pmic.201200402. PMID:23533086
  • Reusche M, Thole K, Janz D, et al. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell. 2012;24:3823–3837. doi:10.1105/tpc.112.103374. PMID:23023171
  • Xie Q, Tzfadia O, Levy M, et al. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy. 2016;12:876–887. doi:10.1080/15548627.2016.1147668. PMID:27071037
  • Kalvari I, Tsompanis S, Mulakkal NC, et al. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy. 2014;10:913–925. doi:10.4161/auto.28260. PMID:24589857
  • Popelka H, Klionsky DJ. Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GABARAP-binding proteins. Autophagy. 2015;11:2153–2159. doi:10.1080/15548627.2015.1111503. PMID:26565669
  • Wu S, Xu Y, Feng Z, et al. Multiple-platform data integration method with application to combined analysis of microarray and proteomic data. BMC Bioinformatics. 2012;13:320. doi:10.1186/1471-2105-13-320. PMID:23198695
  • Mathew R, Khor S, Hackett SR, et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. 2014;55:916–930. doi:10.1016/j.molcel.2014.07.019. PMID:25175026
  • Li J, Liu R, Lei Y, et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2015;6:711–724. doi:10.4161/auto.6.6.12397. PMID:20543569
  • Mehta A, Magalhães BS, Souza DS, et al. Rooteomics: the challenge of discovering plant defense-related proteins in roots. Curr Protein Pept Sci. 2008;9:108–116. doi:10.2174/138920308783955225. PMID:18393883
  • Koers S, Guzel-Deger A, Marten I, et al. Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J. 2010;68:670–680. doi:10.1111/j.1365-313X.2011.04719.x. PMID:21781196
  • Bartels S, Lori M, Mbengue M, et al. The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. J Exp Bot. 2013;64:5309–5321. doi:10.1093/jxb/ert330. PMID:24151300
  • Bartels S, Boller T. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J Exp Bot. 2015;66:5183–5193. doi:10.1093/jxb/erv180. PMID:25911744
  • Kadota Y, Sklenar J, Derbyshire P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell. 2014;54:43–55. doi:10.1016/j.molcel.2014.02.021. PMID:24630626
  • Straus MR, Rietz S, Ver Loren van Themaat E, et al. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J. 2010;62:628–640. doi:10.1111/j.1365-313X.2010.04178.x. PMID:20163553
  • Palma K, Thorgrimsen S, Malinovsky FG, et al. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. Plos Pathogens. 2010;6:e1001137. doi:10.1371/journal.ppat.1001137. PMID:20949080
  • Gomes LC, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta. 2013;1833:205–212. doi:10.1016/j.bbamcr.2012.02.012. PMID:22406072
  • Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 2000;5:225–230. doi:10.1016/S1360-1385(00)01605-8. PMID:10785669
  • Maxwell DP, Nickels R, McIntosh L. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 2002;29:269–279. doi:10.1046/j.1365-313X.2002.01216.x. PMID:11844105
  • Dutilleul C, Garmier M, Noctor G, et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell. 2003;15:1212–1226. doi:10.1105/tpc.009464. PMID:12724545
  • Swidzinski JA, Leaver CJ, Sweetlove LJ. A proteomic analysis of plant programmed cell death. Phytochemistry. 2004;65:1829–1838. doi:10.1016/j.phytochem.2004.04.020. PMID:15276441
  • Cvetkovska M, Vanlerberghe GC. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ. 2013;36:721–732. doi:10.1111/pce.12009. PMID:22978428
  • Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777:1092–1097. doi:10.1016/j.bbabio.2008.05.001. PMID:18519024
  • Wei Y, Chiang WC, Sumpter R Jr, et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168:224–238. doi:10.1016/j.cell.2016.11.042. PMID:28017329
  • van Doorn WG. Classes of programmed cell death in plants, compared to those in animals. J Exp Bot. 2011;62:4749–4761. doi:10.1093/jxb/err196. PMID:21778180
  • Barceló AR. Lignification in plant cell walls. Int Rev Cytol. 1997;176:87–132. doi:10.1016/S0074-7696(08)61609-5. PMID:9394918
  • Xu L, Zhu L, Tu L, Liu L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62:5607–5621. doi:10.1093/jxb/err245. PMID:21862479
  • Pomar F, Novo M, Bernal MA, et al. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol. 2004;163:111–123. doi:10.1111/j.1469-8137.2004.01092.x.
  • Kwon SI, Cho HJ, Kim SR, et al. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol. 2013;161:1722–1736. doi:10.1104/pp.112.208108. PMID:23404918
  • Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51:1126–1136. doi:10.1111/j.1365-313X.2007.03212.x. PMID:17666025
  • Chaudhary P, Godara S, Cheeran AN, et al. Fast and accurate method for leaf area measurement. IJCA. 2012;49:22–25. doi:10.5120/7655-0757.
  • Wang ZQ, Xu XY, Gong QQ, et al. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteomics. 2014;98:189–205. doi:10.1016/j.jprot.2013.12.023. PMID:24412201
  • Nesvizhskii AI, Keller A, Kolker E, et al. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–4658. doi:10.1021/ac0341261. PMID:14632076
  • Shadforth IP, Dunkley TPJ, Lilley KS, et al. i-Tracker: For quantitative proteomics using iTRAQ (TM). BMC Genomics. 2005;6:145. doi:10.1186/1471-2164-6-145. PMID:16242023
  • Du Z, Zhou X, Ling Y, et al. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–W70. doi:10.1093/nar/gkq310. PMID:20435677
  • Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114. doi:10.1093/nar/gkr988. PMID:22080510
  • Wang HY, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J. 2009;7:13–23. doi:10.1111/j.1467-7652.2008.00367.x. PMID:18761653
  • Pantelides IS, Tjamos SE, Paplomatas EJ. Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Mol Plant Pathol. 2010;11:191–202. doi:10.1111/j.1364-3703.2009.00592.x. PMID:20447269
  • Li F, Vierstra RD. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy. 2014;10:1466–1467. doi:10.4161/auto.29320. PMID:24991832
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222. doi:10.1080/15548627.2015.1100356. PMID:26799652
  • Moreira-Vilar FC, Siqueira-Soares RdC, Finger-Teixeira A, et al. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS One. 2014;9:e110000. doi:10.1371/journal.pone.0110000. PMID:25330077
  • Han LB, Li YB, Wang HY, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell. 2013;25:4421–4438. doi:10.1105/tpc.113.116970. PMID:24220634
  • Song X, Guo H, Zhang G, et al. OsPRA2 fine-tunes rice brassinosteroid receptor. Plant Sign Behav. 2017;4:e1257455. doi:10.1080/15592324.2016.1257455. PMID:28402719
  • Dagdas YF, Belhaj K, Maqbool A, et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife. 2016;5:e10856. doi:10.7554/eLife.10856. PMID:26765567

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.