2,023
Views
8
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast

, , , , , ORCID Icon, & show all
Pages 423-437 | Received 10 Jun 2015, Accepted 14 Sep 2018, Published online: 11 Oct 2018

References

  • Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009;335: 1–32. PMID: 19802558.
  • Eskelinen E-L., Reggiori F, Baba M, Kovács AL, Seglen PO. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy. 2011;7: 935–956. PMID: 21566462.
  • Reggiori F, Komatsu M, Finley K, Simonsen A. Autophagy: more than a nonselective pathway. Int J Cell Biol. 2012;2012: 1–18. PMID: 22666256.
  • Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013;194: 341–361. PMID: 23733851.
  • Baba M, Takeshige K, Baba N, Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol. 1994;124: 903–913. PMID: 8132712.
  • Reggiori F, Wang C-W, Nair U, Shintani T, Abeliovich H, Klionsky DJ. Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell. 2004;15: 2189–2204. PMID: 15004240.
  • Hamasaki M, Noda T, Baba M, Ohsumi Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic. 2005;6: 56–65. PMID: 15569245.
  • Yen W-L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol. 2010;188:101–114. Published January 11, 2010 PMID: 20065092
  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141: 656–667. PMID: 20478256.
  • Longatti A, Tooze SA. Recycling endosomes contribute to autophagosome formation. Autophagy. 2012;8: 1682–1683. PMID: 22874560.
  • Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T. Autophagosomes form at ER–mitochondria contact sites. Nature. 2013;495: 389–393. PMID: 23455425.
  • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001;20: 5971–5981. PMID:11689437.
  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408: 488–492. PMID:11100732.
  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 1999;147: 435–446. PMID:10525546.
  • Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y. In Vivo and In Vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem. 2004;279: 40584–40592. PMID: 15277523.
  • Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol. 2008;182: 129–140. PMID: 18625846.
  • Nair U, Cao Y, Xie Z, Klionsky DJ. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem. 2010;285: 11476–11488. PMID: 20154084.
  • Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T, Reggiori F. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci. 2013;126: 593–604. PMID: 23230146.
  • Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell. 2005;16: 2544–2553. PMID: 15743910.
  • Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol. 2000;148: 465–480. PMID: 10662773.
  • Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010;190: 1005–1022. PMID: 20855505.
  • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198: 219–233. PMID: 22826123.
  • Shirahama-Noda K, Kira S, Yoshimori T, Noda T. TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy. J Cell Sci. 2013;126: 4963–4973. PMID: 23986483.
  • Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell. 2004;6: 79–90. PMID: 14723849.
  • Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda NN. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem. 2012;287: 31681–31690. PMID: 22851171.
  • Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett. 2010;584: 1359–1366. PMID:20146925.
  • Baba M, Osumi M, Scott, SV, Klionsky DJ, Ohsumi Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol. 1997;139: 1687–1695. PMID:9412464.
  • Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat Cell Biol. 2014;16: 425–433. Epub 2014 Apr 6. PMID: 24705553.
  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151: 263–276. PMID: 11038174.
  • Takeshige K. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Boil. 1992;119: 301–311. PMID: 1400575.
  • Suzuki K, Morimoto M, Kondo C, Ohsumi Y. Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae. Dev Cell. 2011;21: 358–365. PMID: 21839922.
  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182: 685–701. PMID: 18725538.
  • Baba N, Ichise N, Tanaka T. Image area extraction of biological objects from a thin section image by statistical texture analysis. J Electron Microsc. 1996;45: 298–306. PMID:8888585.
  • Graef M, Friedman JR, Graham C, Babu M and Nunnari J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell. 2013;24: 2918–2931. PMID:23904270.
  • Suzuki K, Akioka M, CKondo-Kakuta C, Yamamoto H, Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci. 2013;126: 2534–2544. PMID: 23549786.
  • Tomonaga S, Baba M, Baba N. Alternative automatic alignment method for specimen tilt-series images based on back-projected volume data cross-correlations. Microscopy. 2014;63: 279–294. PMID: 24815505.
  • Tomonaga S, Baba M, Yamazaki S, Baba N. A newfield-of-viewautotracking method for online tomography reconstruction based on back-projected ray image cross-correlation. Microscopy. 2014;63: 357–369. PMID: 24938231.
  • Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg protein in pre-autophagosomal structure organization. Genes Cells. 2007;12: 209–218. PMID:17295840.
  • Shintani T, Huang WP, Stromhaug PE, Klionsky DJ. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell. 2002;3: 825–837. PMID: 12479808.
  • Hayashi-Nishino M, Fujit N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009;11: 1433–1437. PMID: 19898463.
  • Ylä-Anttila P, Vihinen H, Eija Jokitalo E, Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 2009;5: 1180–1185. PMID: 19855179.
  • Uemura T, Yamamoto M, Kametaka A, Sou YS, Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M, Waguri S. A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol Cell Biol. 2014;34: 1695–1706. PMID: 24591649.
  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30: e23. PMID:11884642.
  • Kira S, Kumano Y, Ukai H, Takeda E, Matsuura A, Noda T. Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2. Mol Biol Cell. 2016;27: 382–396. PMID:26609069.
  • Matsui A, Kamada Y, Matsuura A. The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet. 2013;9: e1003245. PMID:23382696.
  • Baba M. Electron microscopy in yeast. Methods Enzymol. 2008;451: 133–149. PMID: 19185718.
  • Takaoka A, Hasegawa T, Yoshida K, Mori H. Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy. 2008;108: 230–238. PMID:18036740.
  • Frank J. Three-dimensional electron microscopy of macromolecular assemblies. Vol. (1996). San Diego: Academic Press; 1996. p. 202–210.
  • Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996;116: 71–76. PMID: 8742726.
  • Cataldo S.D, Ficarra E. Mining textural knowledge in biological images: Applications, methods and trends. Compt Struct Biotech J. 2017;15: 56–67. PMID: 27994798.
  • Cendre E, Kaftandjian V, Peix G, Jourlin M, Mitton D, Babot D. An investigation of segmentation methods and texture analysis applied to tomographic images of human vertebral cancellous bone. J Microsc. 2000;197: 305–316. PMID:10692134.
  • Carr JR. De Miranda FP. The semivariogram in comparison to the co-occurrence matrix for classification of image texture. Geosci Remote Sens. 1998;36:1945–1952.
  • Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–621.
  • Russ JC. The image processing handbook. 6th ed. London: CRC Press; 2011. p. 443–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.