6,224
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes

ORCID Icon, , , & ORCID Icon
Pages 941-959 | Received 02 Mar 2018, Accepted 05 Dec 2018, Published online: 08 Feb 2019

References

  • Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013 Jun;194(2):341–361. PMID: 23733851; PMCPMC3664846
  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010 Sep;12(9):823–830. PMID: 20811354; PMCPMC3127249
  • Li F, Vierstra RD. Autophagy: A multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 2012 Sep;17(9):526–537. PMID: 22694835
  • Michaeli S, Galili G, Genschik P, et al. Autophagy in plants–what’s new on the menu? Trends Plant Sci. 2016;21(2):134–144.
  • Meijer WH, van der Klei IJ, Veenhuis M, et al. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy. 2007 Mar-Apr;3(2):106–116. PMID: 17204848
  • Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol. 2012 Aug;53(8):1355–1365. PMID: 22764279
  • Suttangkakul A, Li F, Chung T, et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell. 2011 Oct;23(10):3761–3779. PMID: 21984698; PMC3229148.
  • Doelling JH, Walker JM, Friedman EM, et al. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem. 2002 Sep 6;277(36):33105–33114. PMID: 12070171.
  • Lai Z, Wang F, Zheng Z, et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 2011 Jun;66(6):953–968. PMID: 21395886.
  • Zhou J, Wang J, Cheng Y, et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet. 2013;9(1):e1003196. PMID: 23341779; PMCPMC3547818.
  • Liu Y, Xiong Y, Bassham DC. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy. 2009 Oct;5(7):954–963. PMID: 19587533
  • Xiong Y, Contento AL, Nguyen PQ, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007 Jan;143(1):291–299. PMID: 17098847; PMC1761971.
  • Di Berardino J, Marmagne A, Berger A, et al. Autophagy controls resource allocations and protein storage accumulation in Arabidopsis seeds. J Exp Bot. 2018;69(6):1403–1414.
  • Svenning S, Lamark T, Krause K, et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011 Sep;7(9):993–1010. PMID: WOS:000294477100007.
  • Shibata M, Oikawa K, Yoshimoto K, et al. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell. 2013 Dec;25(12):4967–4983. PMID: 24368788; PMC3903999.
  • Kim J, Lee H, Lee HN, et al. Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell. 2013 Dec;25(12):4956–4966. PMID: 24368791; PMC3903998.
  • Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell. 2014 Feb;26(2):788–807. PMID: 24563201; PMC3967041
  • Kang S, Shin KD, Kim JH, et al. Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep. 2018 Apr;37(4):653–664. PMID: 29350244.
  • Suzuki K, Kubota Y, Sekito T, et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 2007 Feb;12(2):209–218. PMID: 17295840.
  • Kihara A, Noda T, Ishihara N, et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001 Feb 5;152(3):519–530. PMID: 11157979; PMCPMC2196002
  • Patel S, Dinesh-Kumar SP. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy. 2008 Jan 1;4(1):20–27. PMID: WOS:000252211800003.
  • Wang Y, Nishimura MT, Zhao T, et al. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 2011 Oct;68(1):74–87. PMID: 21645148.
  • Xiong Y, Contento AL, Bassham DC. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005 May;42(4):535–546. PMID: WOS:000228746000008
  • Zhuang X, Chung KP, Cui Y, et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci USA. 2017 Jan 17;114(3):E426–E425. PMID: 28053229; PMCPMC5255614.
  • Sláviková S, Shy G, Yao Y, et al. The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot. 2005;56(421):2839–2849.
  • Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001 Mar;2(3):211–216. PMID: 11265251.
  • Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J. 2010 May;62(3):483–493. PMID: 20136727
  • Yoshimoto K, Hanaoka H, Sato S, et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell. 2004 Nov;16(11):2967–2983. PMID: WOS:000225228500010.
  • Thompson AR, Doelling JH, Suttangkakul A, et al. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005 Aug;138(4):2097–2110. PMID: 16040659; PMCPMC1183398.
  • Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics. 2008 Mar;178(3):1339–1353. PMID: WOS:000254921600022
  • Romanov J, Walczak M, Ibiricu I, et al. Mechanism and functions of membrane binding by the Atg5–atg12/Atg16 complex during autophagosome formation. Embo J. 2012;31(22):4304–4317.
  • Yamaguchi M, Matoba K, Sawada R, et al. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol. 2012 Dec;19(12):1250–1256. PMID: 23142983.
  • Rogov V, Dotsch V, Johansen T, et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014 Jan 23;53(2):167–178. PMID: 24462201.
  • Xie Q, Tzfadia O, Levy M, et al. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy. 2016;12(5):876–887. PMID: WOS:000375330100010.
  • Zientara-Rytter K, Lukomska J, Moniuszko G, et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy. 2011 Oct;7(10):1145–1158. PMID: 21670587; PMC3242614.
  • Zhou J, Zhang Y, Qi J, et al. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet. 2014 Jan;10(1):e1004116. PMID: 24497840; PMC3907298.
  • Hafrén A, Macia J-L, Love AJ, et al. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci USA. 2017 Mar 7;114(10):E2026–E2035. PMID: 28223514; PMCPMC5347569.
  • Marshall RS, Li F, Gemperline DC, et al. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell. 2015 Jun 18;58(6):1053–1066. PMID: WOS:000360986700017.
  • Honig A, Avin-Wittenberg T, Ufaz S, et al. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell. 2012 Jan;24(1):288–303. PMID: WOS:000300881800025.
  • Zhou J, Wang Z, Wang X, et al. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Autophagy. 2018;14(3):487–504. PMID: 29313416; PMCPMC5915045.
  • Michaeli S, Honig A, Levanony H, et al. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell. 2014 Oct;26(10):4084–4101. PMID: WOS:000345920900023.
  • Nolan TM, Brennan B, Yang M, et al. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell. 2017 Apr 10;41(1):33–46. PMID: 28399398; PMCPMC5720862.
  • van Den Bosch H, Schutgens RB, Wanders RJ, et al. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. PMID: 1353950.
  • Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. Embo J. 1997 Aug 15;16(16):4806–4816. PMID: 9305623; PMC1170116.
  • Anand P, Kwak Y, Simha R, et al. Hydrogen peroxide induced oxidation of peroxisomal malate synthase and catalase. Arch Biochem Biophys. 2009 Nov;491(1–2):25–31. PMID: 19800310.
  • Young PG, Bartel B. Pexophagy and peroxisomal protein turnover in plants. BBA - Mol Cell Res. 2016 May;1863(5):999–1005. PMID: 26348128; PMCPMC4779433
  • Yoshimoto K, Shibata M, Kondo M, et al. Organ-specific quality control of plant peroxisomes is mediated by autophagy. J Cell Sci. 2014 Mar 15;127(Pt 6):1161–1168. PMID: 24463818.
  • Farmer LM, Rinaldi MA, Young PG, et al. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell. 2013 Oct;25(10):4085–4100. PMID: 24179123; PMC3877801.
  • Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol. 2009 Nov;151(3):1354–1365. PMID: WOS:000271430500036
  • Goto-Yamada S, Mano S, Nakamori C, et al. Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant Cell Physiol. 2014 Mar;55(3):482–496. PMID: 24492254.
  • Gur E, Sauer RT. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 2008 Aug 15;22(16):2267–2277. PMID: 18708584; PMCPMC2518814.
  • Wohlever ML, Baker TA, Sauer RT. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity. Mol Microbiol. 2014 Jan;91(1):66–78. PMID: 24205897; PMC3877180
  • Aksam EB, Koek A, Jourdan S, et al. A peroxisomal Lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy. 2007 Mar-Apr;3(2):96–105. PMID: 17172804
  • Bartoszewska M, Williams C, Kikhney A, et al. Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. J Biol Chem. 2012 Aug 10;287(33):27380–27395. PMID: 22733816; PMC3431691.
  • Rinaldi MA, Patel AB, Park J, et al. The roles of β-oxidation and cofactor homeostasis in peroxisome distribution and function in Arabidopsis thaliana. Genetics. 2016 Nov;204(3):1089–1115. PMID: 27605050; PMCPMC5105844.
  • Bartel B, Farmer LM, Rinaldi MA, et al. Mutation of the Arabidopsis LON2 peroxisomal protease enhances pexophagy. Autophagy. 2014 Mar;10(3):518–519. PMID: 24413187; PMCPMC4077889.
  • Strader LC, Bartel B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant. 2011 February 28;2011(4):477–486. .
  • Zolman BK, Yoder A, Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics. 2000 Nov;156(3):1323–1337. PMID: 11063705; PMCPMC1461311
  • Strader LC, Culler AH, Cohen JD, et al. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol. 2010 Aug;153(4):1577–1586. PMID: 20562230; PMCPMC2923913.
  • Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol. 2001;127(3):1266–1278.
  • Hofius D, Schultz-Larsen T, Joensen J, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell. 2009 May 15;137(4):773–783. PMID: 19450522.
  • Matsushita M, Suzuki NN, Obara K, et al. Structure of Atg5•Atg16, a complex essential for autophagy. J Biol Chem. 2007 Mar 2;282(9):6763–6772. PMID: 17192262.
  • Hu TT, Pattyn P, Bakker EG, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011 May;43(5):476–481. PMID: 21478890; PMCPMC3083492.
  • Yoshimoto K, Jikumaru Y, Kamiya Y, et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell. 2009 Sep;21(9):2914–2927. PMID: 19773385; PMC2768913.
  • Lenz HD, Haller E, Melzer E, et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011 Jun;66(5):818–830. PMID: 21332848.
  • Zolman BK, Bartel B. An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci USA. 2004 Feb 10;101(6):1786–1791. PMID: 14745029; PMCPMC341854.
  • Deosaran E, Larsen KB, Hua R, et al. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci. 2013 Feb 15;126(Pt 4):939–952. PMID: WOS:000317585300008.
  • Rodríguez MC, Wawrzynska A, Sirko A. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level. Plant Signal Behav. 2014;9(12):e975659. PMID: 25482782; PMCPMC4622546
  • Chehab EW, Kim S, Savchenko T, et al. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol. 2011 Jun;156(2):770–778. PMID: 21487047; PMCPMC3177274.
  • Hackenberg T, Juul T, Auzina A, et al. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell. 2013 Nov;25(11):4616–4626. PMID: WOS:000329174400025.
  • Juul T, Malolepszy A, Dybkaer K, et al. The in vivo toxicity of hydroxyurea depends on its direct target catalase. J Biol Chem. 2010 Jul 9;285(28):21411–21415. PMID: 20452979; PMCPMC2898382.
  • Kulich I, Pečenková T, Sekereš J, et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14(11):1155–1165.
  • Ono Y, Wada S, Izumi M, et al. Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant Cell Environ. 2013 Jun;36(6):1147–1159. PMID: 23215962.
  • Hong SB, Kim B-W, Lee K-E, et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol. 2011 Dec;18(12):1323–1330. PMID: WOS:000298011600017.
  • Yamazaki-Sato H, Tanida I, Ueno T, et al. The carboxyl terminal 17 amino acids within Apg7 are essential for Apg8 lipidation, but not for Apg12 conjugation. FEBS Lett. 2003;551(1–3):71–77.
  • Noda NN, Satoo K, Fujioka Y, et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell. 2011 Nov 4;44(3):462–475. PMID: 22055191.
  • Taherbhoy AM, Tait SW, Kaiser SE, et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell. 2011 Nov 4;44(3):451–461. PMID: 22055190; PMCPMC3277881.
  • Farré JC, Burkenroad A, Burnett SF, et al. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 2013;14(5):441–449.
  • Jaillais Y, Fobis-Loisy I, Miege C, et al. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature. 2006 Sep 7;443(7107):106–109. PMID: 16936718.
  • Qin G, Ma Z, Zhang L, et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 2007 Mar;17(3):249–263. PMID: WOS:000246128100007.
  • Fujiki Y, Yoshimoto K, Ohsumi Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 2007 Mar;143(3):1132–1139. PMID: WOS:000244757700007
  • Shin KD, Lee HN, Chung T. A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol Cells. 2014 May;37(5):399. PMID: 24805779; PMCPMC4044311
  • Floyd BE, Morriss SC, MacIntosh GC, et al. Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. Autophagy. 2015;11(12):2199–2212. PMID: 26735434; PMCPMC4835196.
  • Hanaoka H, Noda T, Shirano Y, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002 Jul;129(3):1181–1193. PMID: 12114572; PMCPMC166512.
  • Woo J, Park E, Dinesh-Kumar S. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proc Natl Acad Sci USA. 2014 Jan 14;111(2):863–868. PMID: 24379391; PMCPMC3896200.
  • Farré J-C, Manjithaya R, Mathewson RD, et al. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell. 2008 Mar;14(3):365–376. PMID: 18331717; PMCPMC3763908.
  • Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. Embo J. 2012 Jun 29;31(13):2852–2868. PMID: 22643220; PMCPMC3395097.
  • Lin Y-L, Sung S-C, Tsai H-L, et al. The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell. 2011;23(7):2754–2773.
  • Kaur N, Zhao Q, Xie Q, et al. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins. J Integr Plant Biol. 2013 Jan;55(1):108–120. PMID: WOS:000318600300001.
  • Farmer LM, Book AJ, Lee K-H, et al. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell. 2010 Jan;22(1):124–142. PMID: WOS:000275926100012.
  • Kao Y-T, Gonzalez KL, Bartel B. Peroxisome function, biogenesis, and dynamics in plants. Plant Physiol. 2018 Jan;176(1):162–177. PMID: 29021223; PMCPMC5761812
  • Zhang J, Tripathi DN, Jing J, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015 Oct;17(10):1259–1269. PMID: WOS:000362213500006.
  • Platta HW, El Magraoui F, Bäumer BE, et al. Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol. 2009 Oct 15;29(20):5505–5516. PMID: WOS:000270271100010.
  • Zientara-Rytter K, Ozeki K, Nazarko TY, et al. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy. 2018;14(3):368–384. PMID: 29260977; PMC5915033.
  • Nazarko TY, Ozeki K, Till A, et al. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol. 2014 Feb 17;204(4):541–557. PMID: 24535825; PMC3926955.
  • Burnett SF, Farré J-C, Nazarko TY, et al. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J Biol Chem. 2015 Mar 27;290(13):8623–8631. PMID: 25694426; PMCPMC4375511.
  • Yamashita S-I, Abe K, Tatemichi Y, et al. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy. 2014 Sep;10(9):1549–1564. PMID: 25007327; PMCPMC4206534.
  • Rinaldi MA, Fleming WA, Gonzalez KL, et al. The PEX1 ATPase stabilizes PEX6 and plays essential roles in Arabidopsis peroxisome biology. Plant Physiol. 2017;174:2231–2247.
  • Gonzalez KL, Ratzel SE, Burks KH, et al. A pex1 missense mutation improves peroxisome function in a subset of Arabidopsis pex6 mutants without restoring PEX5 recycling. Proc Natl Acad Sci USA. 2018 Apr 3;115(14):E3163–E3172. PMID: WOS:000429012500014.
  • Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy. 2014 May;10(5):835–845. PMID: 24657987; PMCPMC5119063
  • Law KB, Bronte-Tinkew D, Di Pietro E, et al. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy. 2017 May 4;13(5):868–884. PMID: 28521612; PMCPMC5446072.
  • Woodward AW, Bartel B. The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell. 2005 Feb;16(2):573–583. PMID: 15548601; PMC545895
  • Earley KW, Haag JR, Pontes O, et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 2006 Feb;45(4):616–629. PMID: 16441352.
  • Koncz C, Schell J. The promoter of T L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet. 1986;204(3):383–396.
  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. PMID: 10069079
  • Haughn GW, Somerville C. Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet. 1986;204(3):430–434. PMID: WOS:A1986D929100010
  • Stasinopoulos TC, Hangarter RP. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 1990 Aug;93(4):1365–1369. PMID: 16667626; PMCPMC1062681
  • Neff MM, Turk E, Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 2002 Dec;18(12):613–615. PMID: 12446140
  • Thole JM, Beisner ER, Liu J, et al. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3: Genes Genomes Genetics. 2014 Jul 1;4(7):1259–1274. PMID: WOS:000339326600008.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078–2079. PMID: 19505943; PMCPMC2723002.
  • Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012 Apr-Jun;6(2):80–92. PMID: 22728672; PMCPMC3679285.
  • Maeshima M, Yokoi H, Asahi T. Evidence for no proteolytic processing during transport of isocitrate lyase into glyoxysomes in castor bean endosperm. Plant Cell Physiol. 1988 Mar;29(2):381–384. PMID: WOS:A1988M630000025
  • Olsen LJ, Ettinger WF, Damsz B, et al. Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. Plant Cell. 1993 Aug;5(8):941–952. PMID: 8400872; PMCPMC160329.
  • Lingard MJ, Monroe-Augustus M, Bartel B. Peroxisome-associated matrix protein degradation in Arabidopsis. Proc Natl Acad Sci USA. 2009 Mar 17;106(11):4561–4566. PMID: 19246395; PMC2657447.
  • Pracharoenwattana I, Cornah JE, Smith SM. Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J. 2007;50(3):381–390.