3,384
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

A novel transgenic zebrafish line allows for in vivo quantification of autophagic activity in neurons

ORCID Icon, , &
Pages 1322-1332 | Received 24 Mar 2018, Accepted 11 Jan 2019, Published online: 01 Mar 2019

References

  • Lee J-A. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol. 2012;21(1):1–8.
  • Jh S, Shim JH, Kim K-H, et al. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med. 2012;44(2):89–98.
  • Maday S. Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res. 2016 Oct;1649(Pt B):143–150.
  • Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol. 2009 Oct;187(1):71–79.
  • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006 Apr;441(7095):885–889.
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Apr;441(7095):880–884.
  • Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008 Jul;28(27):6926–6937.
  • Lynch-Day MA, Mao K, Wang K, et al. The role of autophagy in parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a009357–a009357.
  • Martini-Stoica H, Xu Y, Ballabio A, et al. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016 Apr;39(4):221–234.
  • Robak LA, Jansen IE, van Rooij J, et al. International Parkinson’s Disease Genomics Consortium (IPDGC), Heutink P, Shulman JM, IPDGC consortium members. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain. 2017 Nov;140(12):3191–3203.
  • Vogiatzi T, Xilouri M, Vekrellis K, et al. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283(35):23542–23556.
  • Mizushima N, Yoshimori T, Ohsumi Y. The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011 Nov;27:107–132.
  • Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000;19(21):5720–5728.
  • Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14(2):207–215.
  • Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004 Mar;15(3):1101–1111.
  • Rusten TE, Lindmo K, Juhász G, et al. Programmed autophagy in the drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell. 2004 Aug;7(2):179–192.
  • Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the drosophila fat body. Dev Cell. 2004 Aug;7(2):167–178.
  • He C, Bartholomew CR, Zhou W, et al. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy. 2009 May;5(4):520–526.
  • Kozol RA, Abrams AJ, James DM, et al. Function over form: modeling groups of inherited neurological conditions in zebrafish. Front Mol Neurosci. 2016;9:55.
  • Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb;451(7182):1069–1075.
  • Kim C-H, Ueshima E, Muraoka O, et al. Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett. 1996;216(2):109–112.
  • Park H-C, Kim C-H, Bae Y-K, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000 Nov;227(2):279–293.
  • Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Nat Acad Sci. 2007;104(48):19023–19028.
  • Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007 Jun;3(6):331–338.
  • Balgi AD, Fonseca BD, Donohue E, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE. 2009 Sep 22;4(9):e7124.
  • Farkas T, Høyer-Hansen M, Jäättelä M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy. 2009 Oct;5(7):1018–1025.
  • Kudoh T. A gene expression screen in zebrafish embryogenesis. Genome Res. 2001 Dec;11(12):1979–1987.
  • Ito Y, Tanaka H, Okamoto H, et al. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol. 2010 Jun;342(1):26–38.
  • Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000 Sep 18;150(6):1507–1513.
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016 Jan;12(1):1–222. 3rd edition.
  • Wu Y-T, Tan H-L, Shui G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010 Apr 2;285(4):10850–10861.
  • Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, et al. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal. 2014 Dec 26;26(12):2694.
  • Mauvezin C, Neufeld TP. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015 Jun;11(8):1437–1438.
  • Scarlatti F, Maffei R, Beau I, et al. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 2008 Aug;15(8):1318–1329.
  • Spillantini MG, Schmidt ML, Lee VMY, et al. α-Synuclein in Lewy bodies. Nature. 1997 Aug 28;388(6645):839–840.
  • Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000 Apr;247(Suppl 2):II3–II10.
  • Stefanis L. α-synuclein in parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a009399.
  • Nah J, Yuan J, Jung Y-K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells. 2015 May;38(5):381–389.
  • Biglan KM, Oakes D, Lang AE, et al. A novel design of a Phase III trial of isradipine in early Parkinson disease (STEADY-PD III). Ann Clin Transl Neurol. 2017 May 9;4(6):360–368.
  • Chan CS, Guzman JN, Ilijic E, et al. “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature. 2007 Jun 28;447(7148):1081–1086.
  • Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2011 Dec;1812(12):1584–1590.
  • Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008 Mar;4(5):295.
  • Shaker ME, Ghani A, Shiha GE, et al. Nilotinib induces apoptosis and autophagic cell death of activated hepatic stellate cells via inhibition of histone deacetylases. Biochim Biophys Acta, Mol Cell Res. 2013 Aug;1833(8):1992–1993.
  • Yu H-C, Lin C-S, Tai W-T, et al. Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation. J Biol Chem. 2013 Jun 21;288(25):18249–18259.
  • Hebron ML, Lonskaya I, Moussa CEH. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum Mol Genet. 2013 Aug 14;22(16):3315–3328.
  • Karuppagounder SS, Brahmachari S, Lee Y, et al. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2014 May;2(4):4874.
  • Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015 Jun;16(6):345–357.
  • Xi Y, Noble S, Ekker M. Modeling neurodegeneration in Zebrafish. Curr Neurol Neurosci Rep. 2011 Jun;11(3):274–282.
  • Prabhudesai S, Sinha S, Attar A, et al. “Molecular Tweezer” inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics. 2012 Apr;9(2):464–476.
  • Bai Q, Burton EA. Zebrafish models of tauopathy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2011 Mar;1812(3):353–363.
  • Lopez A, Lee SE, Wojta K, et al. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain. 2017 Apr 1;140(4):1128–1146.
  • Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis. 2010 Oct;40(1):58–65.
  • Paquet D, Bhat R, Sydow A, et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest. 2009 May;119(5):1382–1395.
  • Fleming A, Rubinsztein DC. Zebrafish as a model to understand autophagy and its role in neurological disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2011 Apr;1812(4):520–526.
  • Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods. 2015 Mar;75:172–180.
  • Mathai BJ, Meijer AH, Simonsen A. Studying autophagy in Zebrafish. Cells. 2017 Jul 9;6(3).
  • Hu Z-Y, Chen B, Zhang J-P, et al. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J Biol Chem. 2017 Nov 3;292(44):18062–18074.
  • Watchon M, Yuan KC, Mackovski N, et al. Calpain inhibition is protective in machado–joseph disease zebrafish due to induction of autophagy. J Neurosci. 2017 Aug 9;37(32):7782–7794.
  • Swart C, Khoza A, Khan K, et al. Investigating basal autophagic activity in brain regions associated with neurodegeneration using in vivo and ex vivo models. J Alzheimer’s Dis Parkinsonism. 2017;07(4).
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007 Sep-Oct;3(5):452–460.
  • Kwan KM, Fujimoto E, Grabher C, et al. The Tol2kit: A multisite gateway-based construction kit forTol2 transposon transgenesis constructs. Dev Dyn. 2007 Nov;236(11):3088–3099.
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jun 28;9(7):676–682.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jul;9(7):671–675.
  • Asi YT, Simpson JE, Heath PR, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014 Jun;62(6):964–970.
  • Chiou W-F. Effect of Aβ exposure on the mRNA expression patterns of voltage-sensitive calcium channel α1 subunits (α1A–α1D) in human SK-N-SH neuroblastoma. Neurochem Int. 2006 Aug;49(3):256–261.
  • Sousa SR, Vetter I, Ragnarsson L, et al. Expression and pharmacology of endogenous cav channels in SH-SY5Y human neuroblastoma cells. PLoS ONE. 2013 Mar 25;8(3):e59293–11. Dryer SE, editor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.