8,092
Views
19
CrossRef citations to date
0
Altmetric
Research paper

Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells

, , , , , , , , , , , , & show all
Pages 1503-1521 | Received 25 May 2021, Accepted 04 Oct 2021, Published online: 31 Oct 2021

References

  • Goodwin CM, Xu S, Munger J. Stealing the keys to the kitchen: viral manipulation of the host cell metabolic network. Trends Microbiol. 2015 Dec;23(12):789–798.
  • Fan S, Wu K, Zhao M, et al. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy. 2020 Sep 28;17(9):1–20
  • Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015 May;479–480:609–618.
  • Thai M, Graham NA, Braas D, et al. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab. 2014 Apr 1;19(4):694–701.
  • Thaker SK, Chapa T, Garcia G Jr., et al. Differential metabolic reprogramming by Zika Virus promotes cell death in human versus mosquito cells. Cell Metab. 2019 May 7;29(5):1206–1216 e4.
  • Allonso D, Andrade IS, Conde JN, et al. Dengue Virus NS1 protein modulates cellular energy metabolism by increasing Glyceraldehyde-3-Phosphate dehydrogenase activity. J Virol. 2015 Dec;89(23):11871–11883.
  • Fontaine KA, Sanchez EL, Camarda R, et al. Dengue virus induces and requires glycolysis for optimal replication. J Virol. 2015 Feb;89(4):2358–2366.
  • Zhang J, Jia L, Tsang CM, et al. EBV infection and glucose metabolism in nasopharyngeal carcinoma. Adv Exp Med Biol. 2017;1018:75–90.
  • Mullen PJ, Garcia G Jr., Purkayastha A, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun. 2021 Mar 25;12(1):1876.
  • Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab. 2020 Sep 1;32(3):498–499.
  • Sanchez EL, Pulliam TH, Dimaio TA, et al. Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s Sarcoma-Associated herpesvirus lytic replication. J Virol. 2017 May 15;91(10):10.
  • Thyrsted J, Holm CK. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr Opin Biotechnol. 2020 Oct;25(68):44–50.
  • Grasso D, Zampieri LX, Capeloa T, et al. Mitochondria in cancer. Cell Stress. 2020 May 11;4(6):114–146.
  • Polyakov VY, Soukhomlinova MY, Fais D. Fusion, fragmentation, and fission of mitochondria. Biochemistry (Mosc). 2003 Aug;68(8):838–849.
  • de Brito OM, Scorrano L. Mitofusin 2: a mitochondria-shaping protein with signaling roles beyond fusion. Antioxid Redox Signal. 2008 Mar;10(3):621–633.
  • Khan M, Syed GH, Kim SJ, et al. Mitochondrial dynamics and viral infections: a close nexus. Biochim Biophys Acta. 2015 Oct;1853(10Pt B):2822–2833.
  • Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. Int Rev Cell Mol Biol. 2019;347:145–190.
  • Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012 Feb 15;125(Pt 4):795–799.
  • Wang L, Cho YL, Tang Y, et al. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy. Cell Res. 2018 Aug;28(8):787–802.
  • Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018 Feb 6;27(2):299–313.
  • Zhang CS, Hawley SA, Zong Y, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017 Aug 3;548(7665):112–116.
  • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018 Feb;19(2):121–135.
  • Chatel-Chaix L, Cortese M, Romero-Brey I, et al. Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host Microbe. 2016 Sep 14;20(3):342–356.
  • McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol. 2017 Apr;45:83–91.
  • Matsuda N, Tanaka K. Uncovering the roles of PINK1 and parkin in mitophagy. Autophagy. 2010 Oct;6(7):952–954.
  • Avia M, Rojas JM, Miorin L, et al. Virus-induced autophagic degradation of STAT2 as a mechanism for interferon signaling blockade. EMBO Rep. 2019 Nov 5;20(11):e48766.
  • Wang L, Xu C, Johansen T, et al. SIRT1 - a new mammalian substrate of nuclear autophagy. Autophagy. 2021 Feb;17(2):593–595.
  • Xu C, Wang L, Fozouni P, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020 Oct;22(10):1170–1179.
  • Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015 Nov 5;527(7576):105–109.
  • Chen YY, Wang WH, Che L, et al. BNIP3L-Dependent mitophagy promotes HBx-Induced cancer stemness of hepatocellular carcinoma cells via glycolysis metabolism reprogramming. Cancers (Basel). 2020 Mar 11;12(3).
  • Hirschey MD, Shimazu T, Huang JY, et al. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:267–277.
  • Alhazzazi TY, Kamarajan P, Verdin E, et al. Sirtuin-3 (SIRT3) and the hallmarks of cancer. Genes Cancer. 2013 Mar;4(3–4):164–171.
  • Alhazzazi TY, Kamarajan P, Verdin E, et al. SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta. 2011 Aug;1816(1):80–88.
  • Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015 Oct;15(10):608–624.
  • Shi T, Wang F, Stieren E, et al. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005 Apr 8;280(14):13560–13567.
  • Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011 Mar 8;19(3):416–428.
  • Wang T, Cao Y, Zheng Q, et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell. 2019 Aug 22;75(4):823–834 e5.
  • Ganar K, Das M, Sinha S, et al. Newcastle disease virus: current status and our understanding. Virus Res. 2014 May;12(184):71–81.
  • Tayeb S, Zakay-Rones Z, Panet A. Therapeutic potential of oncolytic newcastle disease virus: a critical review. Oncolytic Virother. 2015;4:49–62.
  • Zamarin D, Palese P. Oncolytic newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 2012 Mar;7(3):347–367.
  • Meng S, Zhou Z, Chen F, et al. Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo. Cancer Lett. 2012 Apr 1;317(1):56–64.
  • Ren S, Ding C, Sun Y. Morphology remodeling and selective autophagy of intracellular organelles during viral infections. Int J Mol Sci. 2020 May 23;21(10):10.
  • Li Y, Jiang W, Niu Q, et al. eIF2alpha-CHOP-BCl-2/JNK and IRE1alpha-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of newcastle disease virus. Cell Death Dis. 2019 Nov 26;10(12):891.
  • Cheng JH, Sun YJ, Zhang FQ, et al. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci Rep. 2016 Apr;21(6):24721.
  • Sun Y, Yu S, Ding N, et al. Autophagy benefits the replication of newcastle disease virus in chicken cells and tissues. J Virol. 2014 Jan;88(1):525–537.
  • Santel A, Frank S. Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life. 2008 Jul;60(7):448–455.
  • Yu R, Liu T, Ning C, et al. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J Biol Chem. 2019 Nov 15;294(46):17262–17277.
  • Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018 Jul;20(7):745–754.
  • Yu Y, Clippinger AJ, Pierciey FJ Jr., et al. Viruses and metabolism: alterations of glucose and glutamine metabolism mediated by human cytomegalovirus. Adv Virus Res. 2011;80:49–67.
  • Levy P, Bartosch B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene. 2016 Aug 11;35(32):4155–4164.
  • Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, et al. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 2009 Aug;9(9):1084–1101.
  • Richardson AL, Wang ZC, De Nicolo A, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006 Feb;9(2):121–132.
  • Ren S, Rehman ZU, Shi M, et al. Syncytia generated by hemagglutinin-neuraminidase and fusion proteins of virulent newcastle disease virus induce complete autophagy by activating AMPK-mTORC1-ULK1 signaling>. Vet Microbiol. 2019 Mar;230:283–290.
  • Meng C, Zhou Z, Jiang K, et al. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol. 2012 Jun;157(6):1011–1018.
  • Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017 Jun;20(86):193–224.
  • Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019 Nov 15;366(6467):818–822.
  • Yoboue ED, Valente EM. PINK1 and Parkin: the odd couple. Neurosci Res. 2020 May 15;159:25–33.
  • Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014 Oct 1;33(19):2142–2156.
  • McWilliams TG, Ganley IG. Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide. Methods Mol Biol. 2019;1880:621–642.
  • Zu Y, Chen XF, Li Q, et al. PGC-1alpha activates SIRT3 to modulate cell proliferation and glycolytic metabolism in breast cancer. Neoplasma. 2021 Mar;68(2):352–361.
  • Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1. Nature. 2018 Jul;559(7714):410–414.
  • Yapa NMB, Lisnyak V, Reljic B, et al. Mitochondrial dynamics in health and disease. FEBS Lett. 2021 Apr;595(8):1184–1204.
  • Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016 Feb 1;594(3):509–525.
  • Ozawa S, Ueda S, Imamura H, et al. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci Rep. 2015 Dec;18(5):18575.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033.
  • Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4324–E4333.
  • Seabright AP, Fine NHF, Barlow JP, et al. AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner. FASEB J. 2020 May;34(5):6284–6301.
  • Zhang CS, Lin SC. AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab. 2016 Mar 8;23(3):399–401.
  • Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021 May;17(5):1142–1156.
  • Sica V, Galluzzi L, Bravo-San Pedro JM, et al. Organelle-specific initiation of autophagy. Mol Cell. 2015 Aug 20;59(4):522–539.
  • Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016 Jan 15;351(6270):275–281.
  • Wang X, Shen K, Wang J, et al. Hypoxic preconditioning combined with curcumin promotes cell survival and mitochondrial quality of bone marrow mesenchymal stem cells, and accelerates cutaneous wound healing via PGC-1alpha/SIRT3/HIF-1alpha signaling. Free Radic Biol Med. 2020 Nov 1;159:164–176.
  • Yamada T, Dawson TM, Yanagawa T, et al. SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy. 2019 Nov;15(11):2012–2018.
  • Sun Y, Zheng H, Yu S, et al. Newcastle disease virus v protein degrades mitochondrial antiviral signaling protein to inhibit host Type I interferon production via E3 ubiquitin ligase RNF5. J Virol. 2019 Sep 15;93(18):18.
  • Romer-Oberdorfer A, Werner O, Veits J, et al. Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol. 2003 Nov;84(Pt 11):3121–3129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.