3,940
Views
2
CrossRef citations to date
0
Altmetric
Toolbox

Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function

, ORCID Icon, , ORCID Icon, , , , , , , ORCID Icon & show all
Pages 692-705 | Received 28 May 2020, Accepted 24 Jun 2022, Published online: 25 Jul 2022

References

  • Thomas JA, Simcox DJ, Clarke RT, et al. Successful conservation of a threatened Maculinea butterfly. Science. 2009;325(5936):80.
  • Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852–3866.
  • Steingrímsson E, Copeland NG, Jenkins NA. Melanocytes and the Microphthalmia Transcription Factor Network. Annu Rev Genet. 2004;38(1):365–411.
  • Martina JA, DiabHI, Lishu L, et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 2014;7(309):ra9. DOI:10.1126/scisignal.2004754
  • Steingrímsson E, Tessarollo L, Reid SW, et al. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development. 1998;125(23):4607–4616.
  • Steingrímsson E, Tessarollo L, Pathak B, et al. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci U S A. 2002;99(7):4477–4482.
  • Pastore N, Vainshtein A, Klisch TJ, et al. TFE 3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Mol Med. 2017;9(5):605–621.
  • Puertollano R, Ferguson SM, Brugarolas J, et al. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 2018;37(11). DOI: 10.15252/embj.201798804
  • Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. Eur. Mol. Biol. Organ. J. 2012; 31: 1095–1108.
  • Mizuno H, Higashida C, Yuan Y, et al. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science. 2011;331(6013):80.
  • Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–914.
  • Sha Y, Rao L, Settembre C, et al. STUB 1 regulates TFEB -induced autophagy–lysosome pathway. EMBO J. 2017;36(17):2544–2552.
  • Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Bio. 2016;18(10):1065–1077.
  • Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;13(8):15793 . DOI:10.1038/ncomms14338
  • Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–746.
  • Zhitomirsky B, YunaevA, Kreiserman R, et al. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9(12):1191. DOI:10.1038/s41419-018-1227-0
  • Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget. 2015;6(2):1143–1156.
  • Zhang J, Wang J, Zhou Z, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy. 2018;1–17. DOI:10.1080/15548627.2018.1447290.
  • Drewry DH, Wells CI, Andrews DM, et al. Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS One. 2017;12(8):e0181585. DOI:10.1371/journal.pone.0181585
  • Seefeld MA, Rouse MB, McNulty KC, et al. Discovery of 5-pyrrolopyridinyl-2-thiophenecarboxamides as potent AKT kinase inhibitors Bioorganic Med. Chem. Lett. 2009;19(8):2244–2248. DOI:10.1016/j.bmcl.2009.02.094
  • Liddle J, Bamborough P, Barker MD, et al. 4-Phenyl-7-azaindoles as potent and selective IKK2 inhibitors. Bioorganic Med. Chem. Lett. 2009; 19: 2504–2508.
  • Wang C, Ward ME, Chen R, et al. Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. Stem Cell Reports. 2017;9(4):1221–1233.
  • Tian R, Gachechiladze MA, Ludwig CH, et al. CRISPR Interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron. 2019;104(2):239–255.e12.
  • Fernandopulle MS, et al. Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr Protoc cell Biol. 2018;79(1):e51. https://pubmed.ncbi.nlm.nih.gov/29924488/
  • Gellibert F, Fouchet M-H, and Nguyen V-L, et al. Design of novel quinazoline derivatives and related analogs as potent and selective ALK5 inhibitors. Bioorganic Med. Chem. Lett. 2009;19(8):2277–2281.
  • Nomanbhoy TK, Rosenblum J, Aban A, et al. Inhibitor focusing: direct selection of drug targets from proteomes using activity-based probes. ASSAY and Drug Development Technologies. 2003;1(supplement 2):137–146.
  • Harikumar KB, KunnumakkaraAB, Ochi N, et al. A novel small-molecule inhibitor of protein kinase d blocks pancreatic cancer growth in vitro and In vivo. Mol Cancer Ther. 2010;9(5):1136–1146.
  • Sharlow ER, Mustata Wilson G, Close D, et al. Discovery of diverse small molecule chemotypes with Cell-Based PKD1 Inhibitory activity. PLoS One. 2011;6(10):e25134.
  • Sharlow ER, Giridhar KV, LaValle CR, et al. Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem. 2008;283(48):33516–33526.
  • Cortes CJ, La AR. Neurobiology of Disease TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease : molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiol Dis. 2018;0–1. DOI:10.1016/j.nbd.2018.05.012
  • Decressac M, Mattsson B, Weikop P, et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A. 2013;110(19):E1817–26.
  • Polito VA, Li H, Martini‐Stoica H, et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med. 2014;6(9):1142–1160.
  • Xiao Q, Yan P, Ma X, et al. Neuronal-Targeted TFEB accelerates lysosomal degradation of APP, reducing a generation and amyloid plaque pathogenesis. J Neurosci. 2015;35(35):12137–12151.
  • Tsunemi T, Ashe TD, Morrison BE, et al. PGC-1a rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012;4(142). DOI:10.1126/scitranslmed.3003799
  • Martini-Stoica H, Xu Y, Ballabio A, et al. The Autophagy-Lysosomal Pathway in Neurodegeneration: a TFEB Perspective. Trends Neurosci. 2016;39(4):221–234.
  • Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: molecular mechanisms and therapeutic impacts. J Cell Physiol. 2018;233(9):6524–6543.
  • Lee HJ, Yoon YS, Lee SJ. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 2018;9(7). DOI:10.1038/s41419-018-0749-9
  • Kuiper RP, Schepens M, Thijssen J, et al. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res. 2004;32(8):2315–2322.
  • Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol. 2016;32(1):255–278.
  • Chen JJ, Nathaniel DL, Raghavan P, et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem. 2019;294(50):18952–18966.
  • Wyttenbach A. Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington’s disease. Hum Mol Genet. 2001;10(17):1829–1845.
  • McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 2018;16(7):e2005970.