0
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation

, , , , , , , , , , , , & ORCID Icon show all
Received 15 Jun 2023, Accepted 29 Jul 2024, Accepted author version posted online: 01 Aug 2024
Accepted author version

References

  • Morishita H, Mizushima N Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 2019 Oct 6;35:453–475. 1 10.1146/annurev-cellbio-100818-125300
  • Nakatogawa H Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020 Aug;21(8):439–458.10.1038/s41580-020-0241-0
  • Zhao YG, Codogno P, Zhang H Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021 Nov;22(11):733–750.10.1038/s41580-021-00392-4
  • Levine B, Kroemer G. Biological functions of autophagy fenes: a disease perspective. Cell. 2019 Jan 10;176(1–2):11–42.
  • Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. Nat Cancer. 2023 May;4(5):596–607.10.1038/s43018-023-00546-7
  • Nazio F, Bordi M, Cianfanelli V, et al. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019 Mar;26(4):690–702.10.1038/s41418-019-0292-y
  • Mizushima N The ATG conjugation systems in autophagy. Curr Opin Cell Biol. 2020 Apr;63:1–10. 10.1016/j.ceb.2019.12.001
  • Mizushima N, Yoshimori T, Ohsumi Y. The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107–132. doi: 10.1146/annurev-cellbio-092910-154005
  • Hamaoui D, Subtil A ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J. 2022 Apr;289(7):1779–1800. 10.1111/febs.15833
  • Huang X, Yao J, Liu L, et al. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy. 2022 Sep;18(9):2020–2035.
  • Xu Y, Zhou P, Cheng S, et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell. 2019 Jul 25;178(3):552–566.
  • Zhang Y, Xu X, Hu M, et al. SPATA33 is an autophagy mediator for cargo selectivity in germline mitophagy. Cell Death Differ. 2021 Mar;28(3):1076–1090.10.1038/s41418-020-00638-2
  • Sorbara MT, Ellison LK, Ramjeet M, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity. 2013 Nov 14;39(5):858–873.10.1016/j.immuni.2013.10.013
  • Wang C, Bauckman KA, Ross ASB, et al. A non-canonical autophagy-dependent role of the ATG16L1(T300A) variant in urothelial vesicular trafficking and uropathogenic Escherichia coli persistence. Autophagy. 2019 Mar;15(3):527–542.
  • Gammoh N The multifaceted functions of ATG16L1 in autophagy and related processes. J Cell Sci. 2020 Oct 30;133(20):jcs249227. 10.1242/jcs.249227
  • Matsushita M, Suzuki NN, Obara K, et al. Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem. 2007 Mar 2;282(9):6763–6772.
  • Otomo C, Metlagel Z, Takaesu G, et al. Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol. 2013 Jan;20(1):59–66.10.1038/nsmb.2431
  • Parkhouse R, Ebong IO, Robinson CV, et al. The N-terminal region of the human autophagy protein ATG16L1 contains a domain that folds into a helical structure consistent with formation of a coiled-coil. PLoS One. 2013;8(9):e76237. doi: 10.1371/journal.pone.0076237
  • Pantoom S, Konstantinidis G, Voss S, et al. RAB33B recruits the ATG16L1 complex to the phagophore via a noncanonical RAB binding protein. Autophagy. 2021 Sep;17(9):2290–2304.10.1080/15548627.2020.1822629
  • Itoh T, Fujita N, Kanno E, et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell. 2008 Jul;19(7):2916–2925. 10.1091/mbc.e07-12-1231
  • Metje-Sprink J, Groffmann J, Neumann P, et al. Crystal structure of the Rab33B/Atg16L1 effector complex. Sci Rep. 2020 Jul 31;10(1):12956.10.1038/s41598-020-69637-0
  • Gong X, Wang Y, Tang Y, et al. ATG16L1 adopts a dual-binding site mode to interact with WIPI2b in autophagy. Sci Adv. 2023 Mar;9(9):eadf0824.
  • Dooley HC, Razi M, Polson HE, et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 2014 Jul 17;55(2):238–252.
  • Gammoh N, Florey O, Overholtzer M, Jiang X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat Struct Mol Biol. 2013 Feb;20(2):144–149.
  • Nishimura T, Kaizuka T, Cadwell K, et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 2013 Mar 1;14(3):284–291. 10.1038/embor.2013.6
  • Dudley LJ, Cabodevilla AG, Makar AN, et al. Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy. EMBO J. 2019 May 2;38(9):e100554. 10.15252/embj.2018100554
  • Boukhalfa A, Roccio F, Dupont N, et al. The autophagy protein ATG16L1 cooperates with IFT20 and INPP5E to regulate the turnover of phosphoinositides at the primary cilium. Cell Rep. 2021 Apr 27;35(4):109045. 10.1016/j.celrep.2021.109045
  • Bajagic M, Archna A, Büsing P, et al. Structure of the WD40-domain of human ATG16L1. Protein Sci. 2017 Sep;26(9):1828–1837. 10.1002/pro.3222
  • Fletcher K, Ulferts R, Jacquin E, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018 Feb 15;37(4):e97840. 10.15252/embj.201797840
  • Moreau K, Ravikumar B, Renna M, et al. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011 Jul 22;146(2):303–317.10.1016/j.cell.2011.06.023
  • Lystad AH, Carlsson SR, de la Ballina LR, et al. Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes. Nat Cell Biol. 2019 Mar;21(3):372–383.10.1038/s41556-019-0274-9
  • Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11(1):28–45. doi: 10.4161/15548627.2014.984267
  • Botti-Millet J, Nascimbeni AC, Dupont N, et al. Fine-tuning autophagy: from transcriptional to posttranslational regulation. Am J Physiol-Cell Ph. 2016 Sep 1;311(3):C351–362.
  • Wani WY, Boyer-Guittaut M, Dodson M, et al. Regulation of autophagy by protein post-translational modification. Lab Invest. 2015 Jan;95(1):14–25. 10.1038/labinvest.2014.131
  • Scrivo A, Codogno P, Bomont P Gigaxonin E3 ligase governs ATG16L1 turnover to control autophagosome production. Nat Commun. 2019 Feb 15;10(1):780.10.1038/s41467-019-08331-w
  • Alsaadi RM, Losier TT, Tian W, et al. ULK1-mediated phosphorylation of ATG16L1 promotes xenophagy, but destabilizes the ATG16L1 Crohn’s mutant. EMBO Rep. 2019 Jul;20(7):e46885. 10.15252/embr.201846885
  • Zhao X, Nedvetsky P, Stanchi F, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. Elife. 2019 Oct 3;8:e46380.10.7554/eLife.46380
  • Song H, Pu J, Wang L, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11(8):1308–1325. doi: 10.1080/15548627.2015.1060386
  • Diamanti MA, Gupta J, Bennecke M, et al. IKKα controls ATG16L1 degradation to prevent ER stress during inflammation. J Exp Med. 2017 Feb;214(2):423–437. 10.1084/jem.20161867
  • Song H, Feng X, Zhang M, et al. Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy. 2018;14(5):825–844. doi: 10.1080/15548627.2017.1389357
  • Chen B, Sun Y, Niu J, et al. Protein lipidation in cell signaling and siseases: function, regulation, and therapeutic opportunities. Cell Chem Biol. 2018 Jul 19;25(7):817–831.
  • Jiang H, Zhang X, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev. 2018 Feb 14;118(3):919–988. 10.1021/acs.chemrev.6b00750
  • Ko PJ, Dixon SJ Protein palmitoylation and cancer. EMBO Rep. 2018 Oct;19(10):e46666. 10.15252/embr.201846666
  • Main A, Fuller W Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J. 2022 Feb;289(4):861–882. 10.1111/febs.15781
  • Huang X, Yao J, Liu L, et al. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol Cell. 2023 Oct 5;83(19):3485–3501.
  • Huang X, Liu L, Yao J, et al. S-acylation regulates SQSTM1/p62-mediated selective autophagy. Autophagy. 2024 Jun;20(6):1467–1469.10.1080/15548627.2023.2297623
  • Blanc M, David FPA, van der Goot FG. SwissPalm 2: Protein S-Palmitoylation Database. Methods Mol Biol. 2019; 2009:203–214.
  • Wei X, Song H, Semenkovich CF. Insulin-regulated protein palmitoylation impacts endothelial cell function. Arterioscl Throm Vas. 2014 Feb;34(2):346–354.
  • Ning W, Jiang P, Guo Y, et al. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins. Brief Bioinform. 2021 Mar 22;22(2):1836–1847. 10.1093/bib/bbaa038
  • Kimura S, Noda T, Yoshimori T Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007 Sep-Oct;3(5):452–460.10.4161/auto.4451
  • Elliot Murphy R, Banerjee A In vitro reconstitution of substrate S-acylation by the zDHHC family of protein acyltransferases. Open Biol. 2022 Apr;12(4):210390. 10.1098/rsob.210390
  • Holland SM, Collura KM, Ketschek A, et al. Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):763–768. 10.1073/pnas.1514123113
  • Liu HC, Yan PP, Wu C, et al. Palmitoylated Sept8-204 modulates learning and anxiety by regulating filopodia arborization and actin dynamics. Sci Signal. 2023 Dec 5;16(814):eadi8645 10.1126/scisignal.adi8645
  • Fujioka Y, Noda NN, Nakatogawa H, et al. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Bio Chem. 2010 Jan 8;285(2):1508–1515.
  • Fracchiolla D, Chang C, Hurley JH, et al. A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy. J Cell Biol. 2020 Jul 6;219(7):e201912098. 10.1083/jcb.201912098
  • Lu Y, Zheng Y, Coyaud É, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019 Oct 25;366(6464):460–467.10.1126/science.aau6391
  • Shi C, Yang X, Liu Y, et al. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. EMBO J. 2022 Jun 1;41(11):e109272. 10.15252/embj.2021109272
  • Lemonidis K, Gorleku OA, Sanchez-Perez MC, et al. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. Mol Biol Cell. 2014 Dec 1;25(24):3870–3883. 10.1091/mbc.e14-06-1169
  • Li JH, Chen ZX, Stang MT, et al. Transiently expressed ATG16L1 inhibits autophagosome biogenesis and aberrantly targets RAB11-positive recycling endosomes. Autophagy. 2017;13(2):345–358. doi: 10.1080/15548627.2016.1256521
  • Chen S, Zhu B, Yin C, et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 2017 Sep 21;549(7672):399–403.10.1038/nature23887
  • Zhou L, He X, Wang L, et al. Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation. Cell Death Differ. 2022 Aug;29(8):1541–1551.10.1038/s41418-022-00942-z
  • Wang L, Cai J, Zhao X, et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol Cell. 2023 Jan 19;83(2):281–297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.