0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases.

ORCID Icon, , , , , , , , & show all
Received 05 Apr 2024, Accepted 02 Aug 2024, Accepted author version posted online: 08 Aug 2024
Accepted author version

References

  • Guo J, Huang X, Dou L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7(1):391. doi: 10.1038/s41392-022-01251-0
  • Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging. Adv Exp Med Biol 2015; 847:73–87.
  • López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001
  • Giorgi C, Marchi S, Simoes ICM, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol 2018; 340:209–344.
  • Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30(2):304–312. doi: 10.1038/s41418-022-01094-w
  • Wu Z, Sainz AG, Shadel GS. Mitochondrial DNA: Cellular genotoxic stress sentinel. Trends Biochem Sci 2021; 46:812–821.
  • Occhigrossi L, Rossin F, D’Eletto M, et al. Transglutaminase 2 regulates innate immunity by modulating the STING/TBK1/IRF3 axis. J Immunol. 2021;206(10):2420–2429. doi: 10.4049/jimmunol.2001122
  • Shi R, Guberman M, Kirshenbaum LA. Mitochondrial quality control: the role of mitophagy in aging. Trends Cardiovasc Med. 2018;28(4):246–260. doi: 10.1016/j.tcm.2017.11.008
  • Chen G, Kroemer G, Kepp O. Mitophagy: An emerging role in aging and age-associated diseases. Front Cell Dev Biol 2020; 8:200.
  • Markaki M, Palikaras K, Tavernarakis N. Novel insights into the anti-aging role of mitophagy. Int Rev Cell Mol Biol 2018; 340:169–208.
  • Fimia GM, Stoykova A, Romagnoli A, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447(7148):1121–1125. doi: 10.1038/nature05925
  • Schoenherr C, Byron A, Sandilands E, et al. Ambra1 spatially regulates src activity and src/FAK-mediated cancer cell invasion via trafficking networks. Elife 2017; 6:10.7554/eLife.23172.
  • Schoenherr C, Byron A, Griffith B, et al. The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem. 2020;295(34):12045–12057. doi: 10.1074/jbc.RA120.012565
  • Chen S, Jang GM, Huttenhain R, et al. CRL4(AMBRA1) targets elongin C for ubiquitination and degradation to modulate CRL5 signaling. EMBO J 2018; 37:e97508. doi: 10.15252/embj.201797508. Epub 2018 Aug 30.
  • Di Bartolomeo S, Corazzari M, Nazio F, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010;191(1):155–168. doi: 10.1083/jcb.201002100
  • Antonioli M, Albiero F, Nazio F, et al. AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev Cell. 2014;31(6):734–746. doi: 10.1016/j.devcel.2014.11.013
  • Liu M, Wang Y, Teng F, et al. Structure of the DDB1-AMBRA1 E3 ligase receptor complex linked to cell cycle regulation. Nat Commun. 2023;14(1):7631–7636. doi: 10.1038/s41467-023-43174-6
  • Chaikovsky AC, Li C, Jeng EE, et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature. 2021;592(7856):794–798. doi: 10.1038/s41586-021-03474-7
  • Simoneschi D, Rona G, Zhou N, et al. CRL4(AMBRA1) is a master regulator of D-type cyclins. Nature 2021; 592:789–793.
  • Maiani E, Milletti G, Nazio F, et al. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature. 2021;592(7856):799–803. doi: 10.1038/s41586-021-03422-5
  • Nazio F, Po A, Abballe L, et al. Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol. 2021;142(3):537–564. doi: 10.1007/s00401-021-02347-7
  • Liu J, Yuan B, Cao J, et al. AMBRA1 promotes TGFbeta signaling via nonproteolytic polyubiquitylation of Smad4. Cancer Res 2021; 81:5007–5020.
  • Xia P, Wang S, Du Y, et al. WASH inhibits autophagy through suppression of beclin 1 ubiquitination. Embo J. 2013;32(20):2685–2696. doi: 10.1038/emboj.2013.189
  • Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15(4):406–416. doi: 10.1038/ncb2708
  • Di Rienzo M, Antonioli M, Fusco C, et al. Autophagy induction in atrophic muscle cells requires ULK1 activation by TRIM32 through unanchored K63-linked polyubiquitin chains. Sci Adv. 2019;5(5):eaau8857. doi: 10.1126/sciadv.aau8857
  • Di Rita A, Peschiaroli A, D Acunzo P, et al. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKalpha. Nat Commun 2018; 9:3755–3.
  • Strappazzon F, Di Rita A, Peschiaroli A, et al. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. 2020;27(4):1155–1168. doi: 10.1038/s41418-019-0404-8
  • Baek S, Jang Y. AMBRA1 negatively regulates the function of ALDH1B1, a cancer stem cell marker, by controlling its ubiquitination. Int J Mol Sci 2021; 22:12079. doi: 10.3390/ijms222112079.
  • Manganelli V, Matarrese P, Antonioli M, et al. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy. 2021;17(9):2528–2548. doi: 10.1080/15548627.2020.1834207
  • Cianfanelli V, Fuoco C, Lorente M, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-myc dephosphorylation and degradation. Nat Cell Biol. 2015;17(1):20–30. doi: 10.1038/ncb3072
  • Becher J, Simula L, Volpe E, et al. AMBRA1 controls regulatory T-cell differentiation and homeostasis upstream of the FOXO3-FOXP3 axis. Dev Cell. 2018;47(5):592–607.e6. doi: 10.1016/j.devcel.2018.11.010
  • Di Leo L, Bodemeyer V, Bosisio FM, et al. Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun. 2021;12(1):2550–2552. doi: 10.1038/s41467-021-22772-2
  • Lin Y, Huang C, Gao H, et al. AMBRA1 promotes dsRNA- and virus-induced apoptosis through interacting with and stabilizing MAVS. J Cell Sci 2022; 135:jcs258910. doi: 10.1242/jcs.258910. Epub 2022 Jan 7.
  • Faienza F, Polverino F, Rajendraprasad G, et al. AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation. Cell Mol Life Sci. 2023;80(9):251–256. doi: 10.1007/s00018-023-04878-6
  • Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400. doi: 10.1038/s41576-022-00562-w
  • Nishimura T, Tooze SA Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 2020; 6:32–33. eCollection 2020. 1 10.1038/s41421-020-0161-3
  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. doi: 10.1038/s41580-018-0003-4
  • Noda NN. Structural view on autophagosome formation. FEBS Lett 2023.
  • Lin MG, Hurley JH Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol 2016; 39:61–68. 10.1016/j.ceb.2016.02.010
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168:960–976.
  • Hill SM, Wrobel L, Rubinsztein DC. Post-translational modifications of beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ. 2019;26(4):617–629. doi: 10.1038/s41418-018-0254-9
  • Kang R, Zeh HJ, Lotze MT, et al. The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–580. doi: 10.1038/cdd.2010.191
  • Kumar S, Javed R, Mudd M, et al. Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell. 2021;184(24):5950–5969.e22. doi: 10.1016/j.cell.2021.10.017
  • Cook ASI, Hurley JH. Toward a standard model for autophagosome biogenesis. J Cell Biol 2023; 222:e202304011. doi: 10.1083/jcb.202304011. Epub 2023 Jun 5.
  • Olivas TJ, Wu Y, Yu S, et al. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J Cell Biol 2023; 222:e202208088. doi: 10.1083/jcb.202208088. Epub 2023 Apr 28.
  • Broadbent DG, Barnaba C, Perez GI, et al. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. J Cell Biol 2023; 222:e202210078. doi: 10.1083/jcb.202210078. Epub 2023 Apr 28.
  • Nieto-Torres JL, Leidal AM, Debnath J, et al. Beyond autophagy: the expanding roles of ATG8 proteins. Trends Biochem Sci. 2021;46(8):673–686. doi: 10.1016/j.tibs.2021.01.004
  • Mizushima N The ATG conjugation systems in autophagy. Curr Opin Cell Biol 2020; 63:1–10. 10.1016/j.ceb.2019.12.001
  • Dooley HC, Razi M, Polson HE, et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 2014; 55:238–252.
  • Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 2007;130(1):165–178. doi: 10.1016/j.cell.2007.05.021
  • Lamark T, Johansen T. Mechanisms of selective autophagy. Annu Rev Cell Dev Biol. 2021;37(1):143–169. doi: 10.1146/annurev-cellbio-120219-035530
  • Antonioli M, Di Rienzo M, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 2017;42(1):28–41. doi: 10.1016/j.tibs.2016.09.008
  • Shi C, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of beclin-1 to control TLR4-induced autophagy. Sci Signal 2010; 3:ra42.
  • Strappazzon F, Vietri-Rudan M, Campello S, et al. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. Embo J. 2011;30(7):1195–1208. doi: 10.1038/emboj.2011.49
  • Egan DF, Chun MG, Vamos M, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 2015; 59:285–297.
  • Pagliarini V, Wirawan E, Romagnoli A, et al. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ. 2012;19(9):1495–1504. doi: 10.1038/cdd.2012.27
  • Strappazzon F, Di Rita A, Cianfanelli V, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12(6):963–975. doi: 10.1080/15548627.2016.1164359
  • Antonioli M, Pagni B, Vescovo T, et al. HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1. Autophagy. 2021;17(10):2842–2855. doi: 10.1080/15548627.2020.1847444
  • Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation: mitophagy and beyond. Mol Cell. 2023;83(19):3404–3420. doi: 10.1016/j.molcel.2023.08.021
  • Ganley IG, Simonsen A. Diversity of mitophagy pathways at a glance. J Cell Sci 2022; 135:jcs259748. doi: 10.1242/jcs.259748. Epub 2022 Dec 12.
  • Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3):233–242. doi: 10.1038/s41556-018-0037-z
  • Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy. Embo J. 2021;40(3):e104705. doi: 10.15252/embj.2020104705
  • Liu H, Zang C, Yuan F, et al. The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases. Biochem Pharmacol 2022; 197:114891. 10.1016/j.bcp.2021.114891
  • Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170–R185. doi: 10.1016/j.cub.2018.01.004
  • Heo J, Ordureau A, Paulo JA, et al. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell. 2015;60(1):7–20. doi: 10.1016/j.molcel.2015.08.016
  • Richter B, Sliter DA, Herhaus L, et al. Phosphorylation of OPTN by TBK1 enhances its binding to ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113(15):4039–4044. doi: 10.1073/pnas.1523926113
  • Shiba-Fukushima K, Arano T, Matsumoto G, et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes parkin mitochondrial tethering. PloS Genet. 2014;10(12):e1004861. doi: 10.1371/journal.pgen.1004861
  • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–608. doi: 10.1038/33416
  • Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–1160. doi: 10.1126/science.1096284
  • Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205(2):143–153. doi: 10.1083/jcb.201402104
  • Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510(7503):162–166. doi: 10.1038/nature13392
  • Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. 2014;56(3):360–375. doi: 10.1016/j.molcel.2014.09.007
  • Wei Y, Chiang W, Sumpter RJ, et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168(1–2):224–238.e10. doi: 10.1016/j.cell.2016.11.042
  • Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of alzheimer’s disease. Nat Neurosci 2019; 22:401–412.
  • Tanaka A, Cleland MM, Xu S, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin. J Cell Biol. 2010;191(7):1367–1380. doi: 10.1083/jcb.201007013
  • Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–314. doi: 10.1038/nature14893
  • Gelmetti V, De Rosa P, Torosantucci L, et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 2017;13(4):654–669. doi: 10.1080/15548627.2016.1277309
  • Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010;8(1):e1000298. doi: 10.1371/journal.pbio.1000298
  • Lazarou M, Jin SM, Kane LA, et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Dev Cell. 2012;22(2):320–333. doi: 10.1016/j.devcel.2011.12.014
  • Jian F, Chen D, Chen L, et al. Sam50 regulates PINK1-parkin-mediated mitophagy by controlling PINK1 stability and mitochondrial morphology. Cell Rep. 2018;23(10):2989–3005. doi: 10.1016/j.celrep.2018.05.015
  • Jin G, Xu C, Zhang X, et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat Immunol. 2018;19(1):29–40. doi: 10.1038/s41590-017-0002-1
  • Sekine S, Wang C, Sideris DP, et al. Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol Cell. 2019;73(5):1028–1043.e5. doi: 10.1016/j.molcel.2019.01.002
  • Akabane S, Uno M, Tani N, et al. PKA regulates PINK1 stability and parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell. 2016;62(3):371–384. doi: 10.1016/j.molcel.2016.03.037
  • Yan C, Gong L, Chen L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16(3):419–434. doi: 10.1080/15548627.2019.1628520
  • Jin SM, Lazarou M, Wang C, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191(5):933–942. doi: 10.1083/jcb.201008084
  • Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci. 2011;31(28):10249–10261. doi: 10.1523/JNEUROSCI.1917-11.2011
  • Di Rienzo M, Romagnoli A, Ciccosanti F, et al. AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy. 2022;18(8):1752–1762. doi: 10.1080/15548627.2021.1997052
  • Strappazzon F, Nazio F, Corrado M, et al. Erratum: AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ. 2015;22(3):517. doi: 10.1038/cdd.2014.190
  • Di Rita A, D’Acunzo P, Simula L, et al. AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 2018; 12:92.
  • Morales I, Sanchez A, Puertas-Avendano R, et al. Neuroglial transmitophagy and parkinson’s disease. Glia. 2020;68(11):2277–2299. doi: 10.1002/glia.23839
  • Zhang C, Hao H, Wang Y, et al. Intercellular mitochondrial component transfer triggers ischemic cardiac fibrosis. Sci Bull (Beijing) 2023; 68:1784–1799.
  • Kouli A, Torsney KM, Kuan W. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In: Stoker TB, Greenland JC, eds. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU):; 2018.
  • Pang SY, Ho PW, Liu H, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of parkinson’s disease. Transl Neurodegener 2019; 8:23–9. eCollection 2019.
  • Nguyen TT, Wei S, Nguyen TH, et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med. 2023;55(8):1595–1619. doi: 10.1038/s12276-023-01046-5
  • Reeve A, Simcox E, Turnbull D Ageing and parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14:19–30. 10.1016/j.arr.2014.01.004
  • Paul S, Pickrell AM. Hidden phenotypes of PINK1/parkin knockout mice. Biochim Biophys Acta Gen Subj 2021; 1865:129871.
  • Yang W, Liu Y, Tu Z, et al. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res. 2019;29(4):334–336. doi: 10.1038/s41422-019-0142-y
  • Yang W, Guo X, Tu Z, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein Cell. 2022;13(1):26–46. doi: 10.1007/s13238-021-00888-x
  • Li H, Ham A, Ma TC, et al. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy. 2019;15(1):113–130. doi: 10.1080/15548627.2018.1509818
  • Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in parkinson’s disease. N Engl J Med. 2009;361(17):1651–1661. doi: 10.1056/NEJMoa0901281
  • Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012;11(11):986–998. doi: 10.1016/S1474-4422(12)70190-4
  • Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying gaucher disease heterogeneity. Hum Mol Genet. 2005;14(16):2387–2398. doi: 10.1093/hmg/ddi240
  • Fimia GM, Corazzari M, Antonioli M, et al. Ambra1 at the crossroad between autophagy and cell death. Oncogene. 2013;32(28):3311–3318. doi: 10.1038/onc.2012.455
  • Zhou J, Zhao Y, Li Z, et al. miR-103a-3p regulates mitophagy in parkinson’s disease through parkin/Ambra1 signaling. Pharmacol Res 2020; 160:105197. 10.1016/j.phrs.2020.105197
  • Fanciulli A, Wenning GK, Longo DL. Multiple-system atrophy. N Engl J Med. 2015;372(3):249–263. doi: 10.1056/NEJMra1311488
  • Miki Y, Tanji K, Mori F, et al. AMBRA1, a novel alpha-synuclein-binding protein, is implicated in the pathogenesis of multiple system atrophy. Brain Pathol 2018; 28:28–42.
  • DeTure MA, Dickson DW. The neuropathological diagnosis of alzheimer’s disease. Mol Neurodegener. 2019;14(1):32–35. doi: 10.1186/s13024-019-0333-5
  • Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of alzheimer’s disease neurons. J Alzheimers Dis. 2017;57(4):975–999. doi: 10.3233/JAD-160612
  • Nardini E, Hogan R, Flamier A, et al. Alzheimer’s disease: a tale of two diseases? Neural Regen Res. 2021;16(10):1958–1964. doi: 10.4103/1673-5374.308070
  • Weggen S, Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant alzheimer’s disease. Alzheimers Res Ther. 2012;4(2):9. doi: 10.1186/alzrt107
  • Quan M, Cao S, Wang Q, et al.. Genetic phenotypes of alzheimer’s disease: Mechanisms and potential therapy. Phenomics. 2023;3(4):333–349. doi: 10.1007/s43657-023-00098-x
  • Husain MA, Laurent B, Plourde M APOE and alzheimer’s disease: From lipid transport to physiopathology and therapeutics. Front Neurosci 2021; 15:630502. 10.3389/fnins.2021.630502
  • Guo T, Zhang D, Zeng Y, et al. Molecular and cellular mechanisms underlying the pathogenesis of alzheimer’s disease. Mol Neurodegener. 2020;15(1):40–47. doi: 10.1186/s13024-020-00391-7
  • Sepe S, Nardacci R, Fanelli F, et al. Expression of Ambra1 in mouse brain during physiological and alzheimer type aging. Neurobiol Aging. 2014;35(1):96–108. doi: 10.1016/j.neurobiolaging.2013.07.001
  • Jimenez-Loygorri JI, Benitez-Fernandez R, Viedma-Poyatos A, et al. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205.
  • Villarejo-Zori B, Jimenez-Loygorri JI, Zapata-Munoz J, et al. New insights into the role of autophagy in retinal and eye diseases. Mol Aspects Med 2021; 82:101038. 10.1016/j.mam.2021.101038
  • Jiménez-Loygorri JJ, Villarejo-Zori B, Viedma-Poyatos A, et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat Commun. 2024; 15:830.
  • Somasundaran S, Constable IJ, Mellough CB, et al. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms. Clin Exp Ophthalmol. 2020;48(8):1043–1056. doi: 10.1111/ceo.13834
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–881. doi: 10.1152/physrev.00021.2004
  • Fisher CR, Ferrington DA. Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. Invest Ophthalmol Vis Sci. 2018;59(4):AMD41–AMD47. doi: 10.1167/iovs.18-24289
  • Tong Y, Zhang Z, Wang S. Role of mitochondria in retinal pigment epithelial aging and degeneration. Front. Aging 2022; 3:926627. 10.3389/fragi.2022.926627
  • Datta S, Cano M, Satyanarayana G, et al. Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity. Autophagy. 2023;19(3):966–983. doi: 10.1080/15548627.2022.2109286
  • Fisher CR, Shaaeli AA, Ebeling MC, et al. Investigating mitochondrial fission, fusion, and autophagy in retinal pigment epithelium from donors with age-related macular degeneration. Sci Rep. 2022;12(1):21725–5. doi: 10.1038/s41598-022-26012-5
  • Ramirez-Pardo I, Villarejo-Zori B, Jimenez-Loygorri JI, et al. Ambra1 haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration. Autophagy. 2023;19(3):784–804. doi: 10.1080/15548627.2022.2103307
  • Bell K, Rosignol I, Sierra-Filardi E, et al. Age related retinal ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6:21–24. eCollection 2020. 1 10.1038/s41420-020-0257-4
  • Hood DA, Memme JM, Oliveira AN, et al. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2019;81(1):19–41. doi: 10.1146/annurev-physiol-020518-114310
  • Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39. doi: 10.1242/dmm.010389
  • Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330–331. doi: 10.1038/s41467-020-20123-1
  • Larsson L, Degens H, Li M, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427–511. doi: 10.1152/physrev.00061.2017
  • Wiedmer P, Jung T, Castro JP, et al. Sarcopenia - molecular mechanisms and open questions. Ageing Res Rev 2021; 65:101200.
  • Wang S, Long H, Hou L, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 2023;8(1):304. doi: 10.1038/s41392-023-01503-7
  • Gambarotto L, Metti S, Chrisam M, et al. Ambra1 deficiency impairs mitophagy in skeletal muscle. J Cachexia Sarcopenia Muscle. 2022;13(4):2211–2224. doi: 10.1002/jcsm.13010
  • Di Rienzo M, Piacentini M, Fimia GM. A TRIM32-AMBRA1-ULK1 complex initiates the autophagy response in atrophic muscle cells. Autophagy. 2019;15(9):1674–1676. doi: 10.1080/15548627.2019.1635385
  • Di Rienzo M, Romagnoli A, Antonioli M, et al. TRIM proteins in autophagy: Selective sensors in cell damage and innate immune responses. Cell Death Differ. 2020;27(3):887–902. doi: 10.1038/s41418-020-0495-2
  • Romagnoli A, Di Rienzo M, Petruccioli E, et al. The ubiquitin ligase TRIM32 promotes the autophagic response to mycobacterium tuberculosis infection in macrophages. Cell Death Dis. 2023;14(8):505–1. doi: 10.1038/s41419-023-06026-1
  • Wang Z, Yoo YJ, De La Torre R, et al. Inverse correlation of TRIM32 and protein kinase C zeta in T helper type 2-biased inflammation. J Invest Dermatol 2021; 141:1297–1307.e3.
  • Nicklas S, Hillje A, Okawa S, et al. A complex of the ubiquitin ligase TRIM32 and the deubiquitinase USP7 balances the level of c-myc ubiquitination and thereby determines neural stem cell fate specification. Cell Death Differ. 2019;26(4):728–740. doi: 10.1038/s41418-018-0144-1
  • Shieh PB, Kudryashova E, Spencer MJ. Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handb Clin Neurol 2011; 101:125–133.
  • Straub V, Murphy A, Udd B. LGMD workshop study group. 229th ENMC international workshop: Limb girdle muscular dystrophies - nomenclature and reformed classification naarden, the netherlands, 17-19 march 2017. Neuromuscul Disord 2018; 28:702–710.
  • Kudryashova E, Kramerova I, Spencer MJ. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J Clin Invest. 2012;122(5):1764–1776. doi: 10.1172/JCI59581
  • Huang W, Huang T, Liu Y, et al. Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects. Cell Death Dis. 2021;13(1):17. doi: 10.1038/s41419-021-04473-2
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–D444. doi: 10.1093/nar/gkab1061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.