937
Views
1
CrossRef citations to date
0
Altmetric
Brief Communication

Epigenetic ageing of the prefrontal cortex and cerebellum in humans and chimpanzees

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1774-1785 | Received 03 Jan 2022, Accepted 18 May 2022, Published online: 02 Jun 2022

References

  • Field AE, Robertson NA, Wang T, et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71:882–895.
  • Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–367.
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
  • Binder AM, Corvalan C, Mericq V, et al. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics. 2018;13:85–94.
  • Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 8;2016:1844–1859.
  • Christiansen L, Lenart A, Tan Q, et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2016;15:149–154.
  • Horvath S, Mah V, Lu AT, et al. The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY). 2015;7:294–306.
  • Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015a;16:25.
  • Perna L, Zhang Y, Mons U, et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenet. 2016;8:64.
  • Simpkin AJ, Howe LD, Tilling K, et al. The epigenetic clock and physical development during childhood and adolescence: longitudinal analysis from a UK birth cohort. Int J Epidemiol. 2017;dyw307. DOI:10.1093/ije/dyw307
  • Hillary RF, Stevenson AJ, Cox SR, et al. An epigenetic predictor of death captures multi-modal measures of brain health. Mol Psychiatry. 2019;26:3806–3816.
  • Marioni RE, Shah S, McRae AF, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. International Journal of Epidemiology. 2015b;44(4):1388–1396.
  • Hodgson K, Carless MA, Kulkarni H, et al. Epigenetic age acceleration assessed with human white-matter images. J Neurosci. 2017;37:4735–4743.
  • Lu AT, Hannon E, Levine ME, et al. Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nat Commun. 2017;8:1–14.
  • Grodstein F, Lemos B, Yu L, et al. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiol Dis. 2021;105428.
  • Levine ME, Lu AT, Bennett DA, et al. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY). 2015;7:1198–1211.
  • Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. https://pubmed.ncbi.nlm.nih.gov/1759558/.
  • Jernigan TL, Archibald SL, Fennema-Notestine C, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22:581–594.
  • Raz N, Lindenberger U, Rodrigue KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15:1676–1689.
  • Jones JH. Primates and the evolution of long, slow life histories. Curr Biol. 2011;21:R708–R717.
  • Sakai T, Matsui M, Mikami A, et al., 2013. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proceedings of the Royal Society B: Biological Sciences 280, 20122398.
  • Zhu Y, Sousa AMM, Gao T, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science. 2018;362:eaat8077.
  • Hernando-Herraez I, Heyn H, Fernandez-Callejo M, et al. The interplay between DNA methylation and sequence divergence in recent human evolution. Nucleic Acids Res. 2015;43:8204–8214.
  • Hernando-Herraez I, Prado-Martinez J, Garg P, et al. Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet. 2013;9. DOI:10.1371/journal.pgen.1003763
  • Pai AA, Bell JT, Marioni JC, et al. A Genome-Wide Study of DNA Methylation Patterns and Gene Expression Levels in Multiple Human and Chimpanzee Tissues. PLoS Genet. 2011;7:e1001316.
  • Anderson US, Stoinski TS, Bloomsmith MA, et al. Relative numerousness judgment and summation in young, middle-aged, and older adult orangutans (Pongo pygmaeus abelii and Pongo pygmaeus pygmaeus). J Comp Psychol. 2007;121:1–11.
  • Anderson US, Stoinski TS, Bloomsmith MA, et al. Relative numerousness judgment and summation in young and old western lowland gorillas. J Comp Psychol. 2005;119:285–295.
  • Dumitriu D, Hao J, Hara Y, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci. 2010;30:7507–7515.
  • Freire-Cobo C, Edler MK, Munger EL, et al., . Comparative neuropathology in aging primates: a perspective. American Journal of Primatology. 2021;83:e23299.
  • Hof PR, Morrison JH. The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci. 2004;27:607–613.
  • Lacreuse A, Herndon JG. Nonhuman primate models of cognitive aging. Bizon JL, Woods A editors. Animal Models of Human Cognitive Aging. Humana Press: Totowa NJ. 2009. 1–30. DOI: 10.1007/978-1-59745-422-3_2
  • Lacreuse A, Russell JL, Hopkins WD, et al. Cognitive and motor aging in female chimpanzees. Neurobiol Aging. 2014;35:623–632.
  • Languille S, Blanc S, Blin O, et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev. 2012;11:150–162.
  • Luebke J, Barbas H, Peters A. Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev. 2010;62:212–232.
  • Peters A, Leahu D, Moss MB, et al. The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex. 1994;4:621–635.
  • Edler MK, Sherwood CC, Meindl RS, et al.Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease. In: Neurobiol. Aging. Vol. 59; 2017. p. 107–120.
  • Munger, E.L., Edler, M.K., Hopkins, W.D., Ely, J.J., Erwin, J.M., Perl, D.P., Mufson, E.J., Hof, P.R., Sherwood, C.C., Raghanti, M.A. Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees. J Comp Neurol. Vol. 527. 2019. p. 1179–1195.
  • Perez SE, Sherwood CC, Cranfield MR, et al. Early Alzheimer’s disease–type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging. 2016;39:195–201.
  • Autrey MM, Reamer LA, Mareno MC, et al. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification. NeuroImage. 2014;101:59–67.
  • Chen X, Errangi B, Li L, et al. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro-and microstructural changes. Neurobiol Aging. 2013;34:2248–2260.
  • Finch CE, Austad SN. Commentary: is Alzheimer’s disease uniquely human? Neurobiol. Aging (Albany NY). 2015;36:553–555.
  • Sherwood CC, Gordon AD, Allen JS, et al. Aging of the cerebral cortex differs between humans and chimpanzees. Proc Natl Acad Sci USA. 2011;108:13029–13034.
  • Guevara E, Lawler R, Staes N, et al. Age-associated epigenetic change in chimpanzees and humans. Philos Trans Royal Soc B. 2020. DOI:10.1098/rstb.2019.0616
  • Gurven MD, Gomes CM. Mortality, senescence, and life span. In M. N. Muller, R. W. Wrangham, & D. R. Pilbeam (ed.,) : Chimpanzees and Human Evolution. Cambridge MA US: Belknap Press of Harvard University Press; 2017. p. 181–216. DOI:10.4159/9780674982642-005
  • Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16:624–633.
  • Balsters JH, Cussans E, Diedrichsen J, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49:2045–2052.
  • Barton RA, Venditti C. Rapid evolution of the cerebellum in humans and other great apes. Curr Biol. 2014;24:2440–2444.
  • Carlén M. What constitutes the prefrontal cortex? Science. 2017;358:478–482.
  • Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–447.
  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, et al. Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys. J Comp Neurol. 2008;506:409–424.
  • Sherwood CC, Stimpson CD, Raghanti MA, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103:13606–13611.
  • Smaers JB, Turner AH, Gómez-Robles A, et al. A cerebellar substrate for cognition evolved multiple times independently in mammals. eLife. 2018;7:e35696.
  • Miller EK. The prefontral cortex and cognitive control. Nat Rev Neurosci. 2000;1:59–65.
  • West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120:272.
  • Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–434.
  • Gurven M. Human survival and life history in evolutionary perspective In John C. Mitani, Josep Call, Peter M. Kappeler, Ryne A. Palombit, and Joan B. Silk (eds.,): The Evolution of Primate Societies. University of Chicago Press Chicago; 2012. p. 293–314.
  • Robson SL, Wood B. Hominin life history: reconstruction and evolution. J Anatomy. 2008;212:394–425.
  • Caro TM, Sellen DW, Parish A, et al. Termination of reproduction in nonhuman and human female primates. Int J Primatol 16(2):205–220.
  • Kaplan H, Hill K, Lancaster J, et al. A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthropol. 2000;9:156–185.
  • Sousa AM, Zhu Y, Raghanti MA, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027–1032.
  • Bailey P, Bonin GV, McCulloch WS. The isocortex of the chimpanzee, The isocortex of the chimpanzee. Oxford England: Illinois Press; 1950. Univ
  • Vickery S, Hopkins WD, Sherwood CC, et al. Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. Elife. 2020;9:e60136.
  • Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:3982–3984.
  • Teschendorff AE, Marabita F, Lechner M, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–196.
  • Teschendorff AE, Menon U, Gentry-Maharaj A, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLOS ONE. 2009;4:e8274.
  • Guevara EE, Hopkins WD, Hof PR, et al. Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLOS Genet. 2021;17:e1009506.
  • Lammey ML, Ely JJ, Zavaskis T, et al. Effects of Aging and Blood Contamination on the Urinary Protein–Creatinine Ratio in Captive Chimpanzees (Pan troglodytes). J Am Assoc Lab Anim Sci. 2011;50:374–377.
  • Videan EN, Fritz J, Murphy J. Effects of aging on hematology and serum clinical chemistry in chimpanzees (Pan troglodytes). Am J Primatol. 2008;70:327–338.
  • Wood BM, Watts DP, Mitani JC, et al. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J Hum Evol. 2017;105:41–56.
  • R Core Team. R: a language and environment for statistical computing. Vienna Austria: R Foundation for Statistical Computing; 2019.
  • Box GE, Cox DR. An analysis of transformations. J R Statis Soc Ser B (Methodol). 1964;26:211–243.
  • Harris EK, Boyd JC. Statistical bases of reference values in laboratory medicine. Boca Raton: CRC Press; 1995.
  • Johansson Å, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS ONE. 2013;8:e67378.
  • El Khoury LY, Gorrie-Stone T, Smart M, et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019;20. DOI:10.1186/s13059-019-1810-4
  • Miller DJ, Duka T, Stimpson CD, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA. 2012;109: 16480–16485.
  • Somel M, Franz H, Yan Z, et al. Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA. 2009;106:5743–5748.
  • Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191–218.
  • Haug H, Eggers R. Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiol Aging. 1991;12:336–338.
  • Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res. 1979;163:195–205.
  • Scheibel ME, Lindsay RD, Tomiyasu U, et al. Progressive dendritic changes in aging human cortex. Exp Neurol. 1975;47:392–403.
  • Seaman KL, Smith CT, Juarez EJ, et al. Differential regional decline in dopamine receptor availability across adulthood: linear and nonlinear effects of age. Hum Brain Mapp. 2019;40:3125–3138.
  • Suhara T, Fukuda H, Inoue O, et al. Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology (Berl). 1991;103:41–45.
  • Tisserand DJ, Van Boxtel MP, Pruessner JC, et al. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex. 2004;14:966–973.
  • Wong DF, Wagner HN, Dannals RF, et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science. 1984;226:1393–1396.
  • Duan H, Wearne SL, Rocher AB, et al. Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex. 2003;13:950–961.
  • Bianchi S, Stimpson CD, Duka T, et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc Natl Acad Sci USA. 2013;110:10395–10401.
  • Hopkins WD, Mareno MC, Neal Webb SJ, et al. Age-related changes in chimpanzee (Pan troglodytes) cognition: cross-sectional and longitudinal analyses. Am J Primatol. 2021;83:e23214.
  • Mulholland, M.M., Sherwood, C.C., Schapiro, S.J., Raghanti, M.A., Hopkins, W.D. Age-and cognition-related differences in the gray matter volume of the chimpanzee brain (Pan troglodytes): A voxel-based morphometry and conjunction analysis. In: Am. J. Primatol. 2021;83:e23264.
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10:S18–S25.
  • Bufill E, Agustí J, Blesa R. Human neoteny revisited: the case of synaptic plasticity. Am J Hum Biol. 2011;23:729–739.
  • Zhang Q, Vallerga CL, Walker RM, et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019;11:1–11.
  • Blake LE, Roux J, Hernando-Herraez I, et al. A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res. 2020;30:250–262.
  • Bock C, Halbritter F, Carmona FJ, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. In: The BLUEPRINT consortium. Nat Biotechnol. Vol. 34. 2016. p. 726–737.
  • Bulla A, De Witt B, Ammerlaan W, et al. Blood DNA yield but not integrity or methylation is impacted after long-term storage. Biopreserv Biobank. 2016;14:29–38.
  • Li Y, Pan X, Roberts ML, et al. Stability of global methylation profiles of whole blood and extracted DNA under different storage durations and conditions. Epigenomics. 2018;10:797–811.
  • Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2018;19:129–147.
  • Vilahur N, Baccarelli AA, Bustamante M, et al. Storage conditions and stability of global DNA methylation in placental tissue. Epigenomics. 2013;5:341–348.
  • Lowe R, Barton C, Jenkins CA, et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 2018;19:22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.