1,376
Views
0
CrossRef citations to date
0
Altmetric
Brief report

Accelerated epigenetic age at birth and child emotional and behavioural development in early childhood: a meta-analysis of four prospective cohort studies in ECHO

, , , , , , , , , , & ORCID Icon show all
Article: 2254971 | Received 15 Feb 2023, Accepted 29 Aug 2023, Published online: 10 Sep 2023

References

  • Bureau TUSC. Child and Adolescent Health Measurement Initiative. 2018-2019 National Survey of Children’s Health (NSCH) data query. Data Resource Center for Child and Adolescent Health supported by the U.S. Department of Health and Human Services, Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB)., 2020. [cited 2023 May 9]. www.childhealthdata.org
  • Gleason MM, Goldson E, Yogman MW, et al. Addressing early childhood emotional and behavioral problems. Pediatrics. 2016;138(6). doi: 10.1542/peds.2016-3025
  • Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. (Albany NY). Aging. 2018;10(4):573–7. doi: 10.18632/aging.101414
  • Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. aging (Albany NY). Aging. 2019;11(2):303–327. doi: 10.18632/aging.101684
  • Bohlin J, Håberg SE, Magnus P, et al. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016;17(1):207. doi: 10.1186/s13059-016-1063-4
  • Knight AK, Craig JM, Theda C, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17(1):206. doi: 10.1186/s13059-016-1068-z
  • Lee Y, Choufani S, Weksberg R, et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. (Albany NY). Aging. 2019;11(12):4238–4253. doi: 10.18632/aging.102049
  • Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, et al. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009;124(2):717–728. doi: 10.1542/peds.2008-2816
  • Potijk MR, de Winter AF, Bos AF, et al. Higher rates of behavioural and emotional problems at preschool age in children born moderately preterm. Arch Dis child. Arch Dischildhood. 2012;97(2):112–117. doi: 10.1136/adc.2011.300131
  • Hochstedler KA, Bell G, Park H, et al. Gestational age at birth and risk of developmental delay: the upstate KIDS study. Am J Perinatol. 2021;38(10):1088–1095. doi: 10.1055/s-0040-1702937
  • Suarez A, Lahti J, Czamara D, et al. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents. Clin Epigenetics. 2018;10(1):96. doi: 10.1186/s13148-018-0528-6
  • Suarez A, Lahti J, Czamara D, et al. The epigenetic clock at birth: associations with maternal antenatal depression and child psychiatric problems. J Am Acad Child Adolesc Psychiatry. 2018;57(5):321–328.e2. doi: 10.1016/j.jaac.2018.02.011
  • Polinski KJ, Robinson SL, Putnick DL, et al. Epigenetic gestational age and the relationship with developmental milestones in early childhood. Hum Mol Genet. 2023;32(9):1565–1574. doi: 10.1093/hmg/ddac302
  • Newschaffer CJ . Infant siblings and the investigation of autism risk factors. J Neurodevelop Disord. 2012;4(1). doi: 10.1186/1866-1955-4-7
  • Hertz-Picciotto I. A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. Environ Health Perspect. 2018;126(11). doi: 10.1289/EHP535
  • O'Shea T, Allred E, Dammann O, et al. The ELGAN study of the brain and related disorders in extremely low gestational age newborns. Early Human Development. 2009;85(11): 719–725. doi: 10.1016/j.earlhumdev.2009.08.060
  • Harrod C S, Fingerlin T E, Chasan-Taber L, et al. Exposure to prenatal smoking and early-life body composition: The healthy start study. Obesity. 2015;23(1): 234–241. doi: 10.1002/oby.20924
  • Salas LA. FlowSorted.Blood.epic: Illumina EPIC data on immunomagnetic sorted peripheral adult blood cells. R package version 2.0.0. 2022.
  • Bakulski KM, Feinberg JI, Andrews SV, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–362. doi: 10.1080/15592294.2016.1161875
  • Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11(1):125. doi: 10.1186/s13148-019-0717-y
  • de Goede OM, Razzaghian HR, Price EM, et al. Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clin Epigenetics. 2015;7(1):95. doi: 10.1186/s13148-015-0129-6
  • Gervin K, Page CM, Aass HCD, et al. Cell type specific DNA methylation in cord blood: a 450K-reference data set and cell count-based validation of estimated cell type composition. Epigenetics. 2016;11(9):690–698. doi: 10.1080/15592294.2016.1214782
  • Lin X, Tan JYL, Teh AL, et al. Cell type-specific DNA methylation in neonatal cord tissue and cord blood: a 850K-reference panel and comparison of cell types. Epigenetics. 2018;13(9):941–958. doi: 10.1080/15592294.2018.1522929
  • McEwen LM, Jones MJ, Lin DTS, et al. Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clin Epigenetics. 2018;10(1):123. doi: 10.1186/s13148-018-0556-2