4,158
Views
1
CrossRef citations to date
0
Altmetric
Original Article

The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata)

, , , , , , , , , , , , & show all
Article: 1271527 | Received 06 Oct 2016, Accepted 03 Dec 2016, Published online: 31 Jan 2017

References

  • OECD-FAO. OECD-FAO agricultural outlook 2011-2020. Paris: OECD/FAO; 2011.
  • Shiundu KM, Oniang’o RK. Marketing African leafy vegetables: challenges and opportunities in the Kenyan context. Afr J Food Agric Nutr Dev. 2007;7(4).
  • Smith FI, Eyzaguirre P. African leafy vegetables: their role in the World Health Organization’s global fruit and vegetable initiative. Afr J Food Agric Nutr Dev. 2007;7(3).
  • Habwe FO, Walingo KM, Onyango MOA. Food processing and preparation technologies for sustainable utilization of African indigenous vegetables for nutrition security and wealth creation in Kenya. In: Roberston GL, Lupien JR, editors. Using food science and technology to improve nutrition and promote national development: selected case studies: International Union of Food Science and Technology (IUFoST). 2008. ISBN No 978-0-9810247-0-7
  • Getinet A, Rakow G, Raney JP, et al. Glucosinolate content in interspecific crosses of Brassica carinata with B. juncea and B. napus. Plant Breed. 1997;116(1):39–11. DOI:10.1111/j.1439-0523.1997.tb00972.x
  • Bellostas N, Sorensen JC, Sorensen H. Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. J Sci Food Agric. 2007;87(8):1586–1594. DOI:10.1002/jsfa.2896
  • Xin HS, Khan NA, Falk KC, et al. Mid-infrared spectral characteristics of lipid molecular structures in Brassica carinata seeds: relationship to oil content, fatty acid and glucosinolate profiles, polyphenols, and condensed tannins. J Agric Food Chem. 2014;62(32):7977–7988. DOI:10.1021/jf502209x
  • Schreiner M, Beyene B, Krumbein A, et al. Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Agric Food Chem. 2009;57(16):7259–7263. DOI:10.1021/jf901076h
  • Mehta RG, Murillo G, Naithani R, et al. Cancer chemoprevention by natural products: how far have we come? Pharm Res. 2010;27(6):950–961. DOI:10.1007/s11095-010-0085-y
  • Giallourou N, Oruna-Concha MJ, Harbourne N. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chem. 2016;212:411–419. DOI:10.1016/j.foodchem.2016.05.190
  • Giambanelli E, Verkerk R, D’Antuono LF, et al. The kinetic of key phytochemical compounds of non-heading and heading leafy Brassica oleracea landraces as affected by traditional cooking methods. J Sci Food Agric. 2016;96(14):4772–4784. DOI:10.1002/jsfa.7844
  • Kimiywe J, Waudo J, Mbithe D, et al. Utilization and medicinal value of indigenous leafy vegetables consumed in urban and peri-urban Nairobi. Afr J Food Agric Nutr Dev. 2007;7(4). Available from: http://www.ajfand.net/Volume7/No4/index4.html
  • Williams JH, Phillips TD, Jolly PE, et al. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106–1122.
  • Goodman G, Wilson R. Predicting the carcinogenicity of chemicals in humans from rodent bioassay data. Environ Health Persp. 1991;94:195–218. DOI:10.2307/3431313
  • Hamid AS, Tesfamariam IG, Zhang Y, et al. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–1092. DOI:10.3892/ol.2013.1169
  • Smela ME, Currier SS, Bailey EA, et al. The chemistry and biology of aflatoxin B-1: from mutational spectrometry to carcinogenesis. Carcinogenesis. 2001;22(4):535–545.
  • Oguntoyinbo FA, Cho G-S, Trierweiler B, et al. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains. Int J Food Microbiol. 2016;238:103–112. DOI:10.1016/j.ijfoodmicro.2016.08.030
  • Lamy E, Kassie F, Gminski R, et al. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells. Toxicol Lett. 2004;146(2):103–109.
  • Lamy E, Herz C, Lutz-Bonengel S, et al. The MAPK pathway signals telomerase modulation in response to isothiocyanate-induced DNA damage of human liver cancer cells. Plos One. 2013;8(1):e53240. DOI:10.1371/journal.pone.0053240
  • Hanschen FS, Herz C, Schlotz N, et al. The Brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol Nutr Food Res. 2015;59(11):2178–2189. DOI:10.1002/mnfr.201500296
  • Witzel K, Hanschen FS, Klopsch R, et al. Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana. Front Plant Sci. 2015;6:508. DOI:10.3389/fpls.2015.00508
  • Schmidt S, Zietz M, Schreiner M, et al. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(14):2009–2022. DOI:10.1002/rcm.4605
  • Neugart S, Rohn S, Schreiner M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res Int. 2015;76:114–121. DOI:10.1016/j.foodres.2015.02.021
  • Mageney V, Baldermann S, Albach DC. Intraspecific variation in carotenoids of Brassica oleracea var. sabellica. J Agric Food Chem. 2016;64(16):3251–3257. DOI:10.1021/acs.jafc.6b00268
  • Groopman JD, Kensler TW, Wild CP. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu Rev Public Health. 2008;29:187–203. DOI:10.1146/annurev.publhealth.29.020907.090859
  • Cartea ME, Francisco M, Soengas P, et al. Phenolic Compounds in Brassica Vegetables. Molecules. 2011;16(1):251–280. DOI:10.3390/molecules16010251
  • Podsędek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT - Food Sci Technol. 2007;40(1):1–11. DOI:10.1016/j.lwt.2005.07.023
  • Abdel-Wahhab MA, Aly SE. Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem. 2003;51(8):2409–2414. DOI:10.1021/jf0209185
  • Whitty JP, Bjeldanes LF. The effects of dietary cabbage on xenobiotic-metabolizing enzymes and the binding of aflatoxin B1 to hepatic DNA in rats. Food Chem Toxicol. 1987;25(8):581–587.
  • Wang TY, Li CY, Liu Y, et al. Inhibition effects of Chinese cabbage powder on aflatoxin B1-induced liver cancer. Food Chem. 2015;186:13–19. DOI:10.1016/j.foodchem.2015.02.138
  • Bloomfield GS, Mwangi A, Chege P, et al. Multiple cardiovascular risk factors in Kenya: evidence from a health and demographic surveillance system using the WHO STEPwise approach to chronic disease risk factor surveillance. Heart. 2013;99(18):1323–1329. DOI:10.1136/heartjnl-2013-303913
  • Appleton KM, Hemingway A, Saulais L, et al. Increasing vegetable intakes: rationale and systematic review of published interventions. Eur J Nutr. 2016;55:869–896. DOI:10.1007/s00394-015-1130-8
  • Kipkore W, Wanjohi B, Rono H, et al. A study of the medicinal plants used by the Marakwet community in Kenya. J Ethnobiol Ethnomed. 2014;10:24. DOI:10.1186/1746-4269-10-24
  • Kan SD, Cheung MWM, Zhou YL, et al. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl4-induced toxicity in vitro. J Food Sci. 2014;79(2):C147–C54. DOI:10.1111/1750-3841.12350
  • Mori H, Tanaka T, Shima H, et al. Inhibitory effect of chlorogenic acid on methylazoxymethanol acetate-induced carcinogenesis in large intestine and liver of hamsters. Cancer Lett. 1986;30(1):49–54.
  • Huang MT, Smart RC, Wong CQ, et al. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988;48(21):5941–5946.
  • Murakami M, Yamaguchi T, Takamura H, et al. Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. J Food Sci. 2004;69(1):C7–C10. DOI:10.1111/j.1365-2621.2004.tb17848.x
  • Fiol M, Weckmuller A, Neugart S, et al. Thermal-induced changes of kale’s antioxidant activity analyzed by HPLC-UV/Vis-online-TEAC detection. Food Chem. 2013;138(2–3):857–865. DOI:10.1016/j.foodchem.2012.10.101
  • De Beer D, Joubert E, Marais J, et al. Unravelling the total antioxidant capacity of pinotage wines: contribution of phenolic compounds. J Agric Food Chem. 2006;54(8):2897–2905. DOI:10.1021/jf052766u
  • Filannino P, Cardinali G, Rizzello CG, et al. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Appl Environ Microbiol. 2014;80(7):2206–2215. DOI:10.1128/AEM.03885-13
  • Cretenet M, Le Gall G, Wegmann U, et al. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation. BMC Genomics. 2014;15(1):1054. DOI:10.1186/1471-2164-15-1054