1,794
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Article: 1321347 | Received 09 Feb 2017, Accepted 11 Apr 2017, Published online: 07 Jun 2017

References

  • Tahrani AA, Bailey CJ, Del Prato S, et al. Management of type 2 diabetes: new and future developments in treatment. Lancet. 2011;378(9786):182–10 .
  • Tsuda T. Possible abilities of dietary factors to prevent and treat diabetes via the stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res. 2015;59(7):1264–1273.
  • Gonzalez-Abuin N, Pinent M, Casanova-Marti A, et al. Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem. 2015;22(1):39–50.
  • González-Abuín N, Martínez-Micaelo N, Margalef M, et al. A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food Funct. 2014;5(9):2357–2364.
  • Serrano J, Casanova-Martí À, Gil-Cardoso K, et al. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct (Royal Society of Chemistry). 2015;4:483–490.
  • Margalef M, Iglesias-Carres L, Pons Z, et al. Age related differences in the plasma kinetics of flavanols in rats. J Nutr Biochem (Elsevier Inc). 2016;29:90–96.
  • Rindi G, Grant SG, Yiangou Y, et al. Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol. 1990;136(6):1349–1363.
  • González-Abuín N, Martínez-Micaelo N, Blay M, et al. Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells. Am J Physiol Cell Physiol. 2014;306(5):C485–92.
  • Rasmussen SE, Frederiksen H, Krogholm KS, et al. Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res. 2005;49(2):159–174.
  • Serra A, MacI A, Romero MP, et al. Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chem (Elsevier Ltd). 2011;126(3):1127–1137.
  • Serrano J, Casanova-Martí À, Depoortere I, et al. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols. Mol Nutr Food Res. 2016;60(12):2554–2564.
  • Zhang Y, Wang Z, Zhao Y, et al. The plasma 5′-AMP acts as a potential upstream regulator of hyperglycemia in type 2 diabetic mice. Am J Physiol Endocrinol Metab. 2012;302(3):E325–33.
  • Petrolonis AJ, Yang Q, Tummino PJ, et al. Enzymatic characterization of the pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP). J Biol Chem. 2004;279(14):13976–13983.
  • Engelstoft MS, Egerod KL, Lund ML, et al. Enteroendocrine cell types revisited. Curr Opin Pharmacol (Elsevier Ltd). 2013;13(6):912–921.
  • Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11(1):90–94.
  • Tanaka T, Katsuma S, Adachi T, et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4–6):523–527.
  • Gagnon J, Baggio LL, Drucker DJ, et al. Ghrelin is a novel regulator of GLP-1 secretion. Diabetes. 2015;64(5):1513–1521.
  • Lim GE, Huang GJ, Flora N, et al. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology. 2009;150(2):580–591.
  • Montagut G, Onnockx S, Vaqué M, et al. Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. J Nutr Biochem (Elsevier Inc). 2010;21(6):476–481.
  • Penhoat A, Fayard L, Stefanutti A, et al. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice. Metabolism (Elsevier Inc.). 2014;63(1):104–111.
  • Farrell TL, Ellam SL, Forrelli T, et al. Attenuation of glucose transport across Caco-2 cell monolayers by a polyphenol-rich herbal extract: interactions with SGLT1 and GLUT2 transporters. BioFactors. 2013;39(4):448–456.
  • Williamson G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res. 2013;57(1):48–57.
  • Castell-Auví A, Cedó L, Pallarès V, et al. Procyanidins modify insulinemia by affecting insulin production and degradation. J Nutr Biochem (Elsevier Inc). 2012;23(12):1565–1572.
  • Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract (Elsevier Ireland Ltd). 2014;105(3):295–301.
  • Margalef M, Pons Z, Bravo FI, et al. Plasma kinetics and microbial biotransformation of grape seed flavanols in rats. J Funct Foods (Elsevier Ltd). 2015;12:478–488.
  • Faria A, Fernandes I, Norberto S, et al. Interplay between Anthocyanins and Gut Microbiota.pdf. J Agric Food Chem. 2014;62:6898–6902.
  • Monagas M, Urpi-Sarda M, Sánchez-Patán F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1(3):233–253.
  • Yamashita Y, Okabe M, Natsume M, et al. Cinnamtannin A2, a tetrameric procyanidin, increases GLP-1 and insulin secretion in mice. Biosci Biotechnol Biochem. 2013;77(4):888–891.
  • Schonhoff SE, Giel-Moloney M, Leiter AB. Minireview: development and differentiation of gut endocrine cells. Endocrinology. 2004;145(6):2639–2644.
  • Flier L, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71(1):241–260.
  • Xu G, Li Z, Ding L, et al. Intestinal mTOR regulates GLP-1 production in mouse L cells. Diabetologia. 2015;58(8):1887–1897.
  • Yang Z-H, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite (Elsevier Ltd). 2013;65:1–7.
  • García-Martínez JM, Chocarro-Calvo A, Moya CM, et al. WNT/β-catenin increases the production of incretins by entero-endocrine cells. Diabetologia. 2009;52(9):1913–1924.
  • Yi F, Sun J, Lim GE, et al. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology. 2008;149(5):2341–2351.
  • Ramesh N, Mortazavi S, Unniappan S. Nesfatin-1 stimulates glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide secretion from STC-1 cells in vitro. Biochem Biophys Res Commun (Elsevier Ltd). 2015;462(2):124–130.
  • Ramesh N, Mortazavi S, Unniappan S. Nesfatin-1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice. Biochem Biophys Res Commun (Elsevier Ltd). 2016;472(1):201–208.
  • González-Abuín N, Martínez-Micaelo N, Blay M, et al. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. J Agric Food Chem. 2014;62(5):1066–1072.
  • Rindi G, Leiter AB, Kopin AS, et al. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci. 2004;1014:1–12.
  • Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. Endocrinology. 1993;133(1):233–240.
  • Weickert MO, Reimann M, Otto B, et al. Soy isoflavones increase preprandial peptide YY (PYY), but have no effect on ghrelin and body weight in healthy postmenopausal women. J Negat Results Biomed. 2006;5:11.