2,622
Views
16
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.)

, , &
Pages 195-201 | Received 28 May 2015, Accepted 16 Jun 2015, Published online: 20 Aug 2015

References

  • An YQ, Lin RM, Wang FT, Feng J, Xu YF, Xu SC. 2011. Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance. Genet Mol Res. 10(4):3576–3585.
  • Ashley J. 1993. Drought and crop adaptation. In: Rowland JRJ, editor. Dryland farming in Africa. London: Macmillan Press Ltd; p. 46–67.
  • Benesova M, Hola D, Fischer L, Jedelsky PL, Hnilicka F. 2012. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? Plos One. 7:e38017.
  • Budak H, Akpinar BA, Unver T, Turktas M. 2013. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol. 83:89–103.
  • Chen AH. 1998. Research achievement of calreticulin. Chem Life. 18:22.
  • Chen Y, Chen P, de los Reyes B. 2006. Differential responses of the cultivated and wild species of soybean to dehydration stress. Crop Sci. 46:2041–2046.
  • Datta K, Niranjan B, Moumita G, Sellapan K, Yamaguchi Shinozaki K, Datta SK. 2012. Overexpression of Arabidopsis and Rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J. 10:579–586.
  • Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215–223.
  • Delfine S, Tognettir R, Loreto F, Alvino A. 2002. Physiological and growth responses to water stress in field grown bell pepper (Capsicum annuum L.). J Hort Sci Biotechnol. 77:697–704.
  • Devi R, Kaur N, Gupta AK. 2011. Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Ind J Biochem Biophy. 49:257–265.
  • Dhanda SS, Sethi GS, Behi RK. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci. 190:6–12.
  • Esfandiari E, Shekari F, Shekari F, Esfandiari M. 2007. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj. 35:48–56.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 29:185–212.
  • Goud PB, Kachole MS. 2012. Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant Sig Behav. 7:1258–1262.
  • Halliwell B, Foyer CH. 1978. Properties and physiological function of a glutathion reductase purified from spinach leaves by affinity chromotography. Planta. 139:9–17.
  • Hassan NM, El-Bastawisy ZM, El-Sayed AK, Ebeed HT, Nemat Alla MM. 2015. Roles of dehydrin genes in wheat tolerance to drought stress. J Adv Res. 6:179–188.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular Calif Agr Expt Sta Hilg. 347:1–32.
  • Jia XY, Xu CY, Jing RL, Li RZ. 2008. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot. 59:739–751.
  • Kabir AH, Rahman MM, Haider SA, Paul NK. 2015. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environ Expe Bot. 112:16–26.
  • Kosugi H, Kikugawa K. 1985. Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid. Lipid. 20:915–921.
  • Lichtenthaler HK, Wellburn AR. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol Soc Trans. 11:591–592.
  • Liu ML, Li XR, Liu YB, Cao B. 2013. Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem. 73:161–167.
  • Maathuis FJ. 2009. Physiological functions of mineral macronutrients. Curr Opin Plant Biol. 12:250–258.
  • McWilliam J. 1989. The dimensions of drought. In: Baker F, editor. Drought resistance in cereals. Wallingford, UK: CAB International; p. 1–11.
  • Michalak M, Groenendyk J, Szabo E, Gold LI. 2009. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci. 7:405–410.
  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138:341–351.
  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D. 2004. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome. 47(3):493–500.
  • Persson S, Wyatt SE, Love J, Thompson WF, Robertson D, Boss WF. 2001. The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. Plant Physiol. 126(3):1092–1104.
  • Radhouane L. 2007. Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afri J Biotechnol. 6:1102–1105.
  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM. 2014. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res. 23(3):421–439.
  • Rhodes D, Samaras Y. 1994. Genetic control of osmoregulation in plants. In: Strange K, editor. Cellular and molecular physiology of cell volume regulation. Boca Raton: CRC Press; p. 347–361.
  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S. 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Nat Acad Sci USA. 104:19631–19636.
  • Sairam RK, Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci. 86:407–421.
  • Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot. 58:221–227.
  • Sun M, Zigman S. 1978. An improved spectrophotomeric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 90:81–89.
  • Upadhyaya H, Panda SK, Dutta BK. 2011. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep. 30(4):495–503.
  • Vega DL, Fernandez RP, Mateo MCM, Bustamante J, Bustamante A, Herrero AM, Munguira EB. 2003. Study of activity of glutathione-peroxidase, glutathione-transferase and glutathione reductase in renal transplants. Transplan Proceed. 35:1346–1350.