2,227
Views
34
CrossRef citations to date
0
Altmetric
Plant-Soil Interactions (including Plant-Water Interactions)

Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.)

, , , &
Pages 237-243 | Received 13 Jan 2017, Accepted 11 Apr 2017, Published online: 08 May 2017

References

  • Abd_Allah EF, Hashem A, Alqarawi AA, Alwathnani HA. 2015. Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot. 47(2):785–795.
  • Aebi H. 1984. Catalase in vitro. Meth Enzymol. 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LS, Zhang J-S. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. &Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One. 10(1):e0114571. doi: 10.1371/journal.pone.0114571.
  • Amaya-Carpio L, Davies FT Jr, Fox T, He C. 2009. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica. 47(1):1–10. doi: 10.1007/s11099-009-0003-x
  • Amenta JS. 1964. A rapid method for quantification of lipids separated by thin layer chromatography. J Lipid Res. 5:270–272.
  • Ammar WB, Nouairi I, Zarrouk M, Jemal F. 2008. The effect of cadmium on lipid and fatty acid biosynthesis in tomato leaves. Biologia. 63(1):86–93.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15. doi: 10.1104/pp.24.1.1
  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A. 2014. Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotox Environ Saf. 106:54–61. doi: 10.1016/j.ecoenv.2014.04.017
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060
  • Ben Ammar W, Nouairi I, Zarrouk M, Jemal F. 2007. Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Plant Growth Regul. 53(2):75–85. doi: 10.1007/s10725-007-9203-1
  • Burd GI, Dixon GD, Glick BR. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol. 46:237–245. doi: 10.1139/w99-143
  • Cachorro P, Ortiz A, Cerda A. 1993. Effects of saline stress and calcium on lipid composition in bean roots. Phytochem. 32:1131–1136. doi: 10.1016/S0031-9422(00)95077-5
  • Carleton M, Foote K. 1965. A comparison of methods for estimating total leaf area of barley plants. Crop Sci. 5(6):602–603. doi: 10.2135/cropsci1965.0011183X000500060041x
  • Chen S, Sun L, Sun T, Chao L, Guo G. 2007. Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system. Environ Geochem Health. 29:435–446. doi: 10.1007/s10653-007-9088-y
  • Ci D, Jiang D, Dai T, Jing Q, Cao W. 2009. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere. 77(11):1620–1625. doi: 10.1016/j.chemosphere.2009.08.062
  • Dittmer JC, Lester RL. 1964. A simple, specific spray for the detection of phospholipids on thin layer chromatograms. J Lipid Res. 5:126–127.
  • Dittmer JC, Wells MA. 1969. Quantitative and qualitative analysis of lipid and lipid components. Methods Enzymol. 14:482–530. doi: 10.1016/S0076-6879(69)14055-0
  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaibi W. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol. 7:358–368. doi: 10.1055/s-2005-837696
  • Ehlert C, Maurel C, Tardieu F, Simonneau T. 2009. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol. 150:1093–1104. doi: 10.1104/pp.108.131458
  • Elloumi N, Zouari M, Chaari L, Jomni C, Marzouk B, Elloumi FBA. 2014. Effects of cadmium on lipids of almond seedlings (Prunus dulcis). Bot Stud. 55(61):1–9.
  • Fölch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 226:497–509.
  • Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133:21–25. doi: 10.1007/BF00386001
  • Gallego SM, Pena LB., Barcia RA., Azpilicueta CE., Iannone MF., Rosales EP., Zawoznik MS., Groppa MD., Benavides MP. 2012. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot. 83:33–46. doi: 10.1016/j.envexpbot.2012.04.006
  • Gupta AK, Kaur N. 2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci. 30:761–76. doi: 10.1007/BF02703574
  • Hashem A, Abd_Allah EF, Alqarawi AA, Egamberdieva D. 2016. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci. 23:39–47. doi: 10.1016/j.sjbs.2015.11.007
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophysic. 125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Iqbal N, Umar S, Khan NA. 2015. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol. 178:84–91. doi: 10.1016/j.jplph.2015.02.006
  • Irfan M, Ahmad A, Hayat S. 2014. Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci. 21:125–131. doi: 10.1016/j.sjbs.2013.08.001
  • Jackson ML. 1962. Soil chemical analysis. New York (NY): Prentice Hall; p. 263–268.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57:315–319. doi: 10.1104/pp.57.2.315
  • Karcz W, Kurtyka R. 2007. Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biol Plant. 51:713–719. doi: 10.1007/s10535-007-0147-0
  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA. 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol. 173:9–18. doi: 10.1016/j.jplph.2014.09.011
  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant. 32:121–132. doi: 10.1007/s11738-009-0387-z
  • Kurtyka R, Małkowski E, Kita A, Karcz W. 2008. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish J Environ Stud. 17:51–56.
  • Kuznetsova TY, Vetchinnikova LV, Titov AF, Ilinova MK. 2008. Effect of cadmium on fatty acid composition of lipids in the shoots of Karelian birch cultured in vitro. Russ J Plant Physiol. 55:657–662. doi: 10.1134/S1021443708050099
  • Lowry OH, Rosebrough NS, Farrand AL, Randall RJ. 1951. Protein measurement with folin phenol reagent. J Bio Chem. 193:263–275.
  • Mangal M, Agarwal M, Bhargava D. 2013. Effect of cadmium and zinc on growth and biochemical parameters of selected vegetables. J Pharma Phytochem. 2:106–114.
  • Mansour MMF, Salama KHA. 2004. Cellular basis of salinity tolerance in plants. Environ Exp Bot. 52:113–122. doi: 10.1016/j.envexpbot.2004.01.009
  • Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x
  • Marsh JB, Weinstein DB. 1966. Simple charring method for determination of lipids. J Lipid Res. 7:574–576.
  • Maxwell MAB, Williams JP. 1968. Separation and estimation of the galactolipid components of broad bean leaves. J Chromatogr. 35:223–229. doi: 10.1016/S0021-9673(01)82378-5
  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F. 2003. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot. 50:265–276. doi: 10.1016/S0098-8472(03)00037-6
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22:867–880.
  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci. 3:1476–1489. doi: 10.4236/ajps.2012.310178
  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F. 2000. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant. 108:87–93. doi: 10.1034/j.1399-3054.2000.108001087.x
  • Rosa M, Hilal M, Gonzalez JA, Prado FE. 2009. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem. 47:300–307. doi: 10.1016/j.plaphy.2008.12.001
  • Rouser G, Fleischer S, Yamamoto A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 5:494–496. doi: 10.1007/BF02531316
  • Sarwat M, Ahmad P, Nabi G, Hu X. 2013. Ca2+ signals: The versatile decoders of environmental cues. Crit Rev Biotechnol. 33:97–109. doi: 10.3109/07388551.2012.672398
  • Sergiev I, Alxieva V, Karanov E. 1997. Effect of spermone, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comp Rend Acad Bulg Sci. 51:121–124.
  • Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM. 2012. Effect of Calcium and Potassium on Antioxidant System of Vicia faba L. Under Cadmium Stress. Int J Mol Sci. 13:6604–6619. doi: 10.3390/ijms13066604
  • Sofo A, Scopa A, Hashem A, Abd_Allah EF. 2016. Lipid metabolism and oxidation in plants subjected to abiotic stresses. In: Mohamed MA, Ahmad P, editors. Plant-environment interaction: responses and approaches to mitigate stress. 1st ed. John Wiley & Sons.
  • Stewart EA. 1989. Analysis of vegetation and other organic material. New York: Acad. Press; p. 46–60.
  • Suzuki N. 2005. Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotech. 22:19–25. doi: 10.5511/plantbiotechnology.22.19
  • Uzun B, Arslan C, Furat S. 2008. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). J Am Oil Chem Soc. 85:1135–1142. doi: 10.1007/s11746-008-1304-0
  • Wi SJ, Seo SY, Cho K, Nam MH, Park KY. 2014. Lysophosphatidylcholine enhances susceptibility in signaling pathway against pathogen infection through biphasic production of reactive oxygen species and ethylene in tobacco plants. Phytochemistry. 104:48–59. doi: 10.1016/j.phytochem.2014.04.009