4,953
Views
36
CrossRef citations to date
0
Altmetric
Plant-Insect Interactions

Role of defense enzymes and phenolics in resistance of wheat crop (Triticum aestivum L.) towards aphid complex

, &
Pages 304-311 | Received 09 Apr 2017, Accepted 06 Jul 2017, Published online: 26 Jul 2017

References

  • Ajai S, Sudheer R, Vijay R, Sandeep M. 2016. Efficacy of quinalphos 25 EC for the management of wheat aphid. Agric Sci Digest. 36:337–339.
  • Archana S, Prabakar K, Raguchander T, Hubballi M, Valarmathi P, Prakasam V. 2011. Defense responses of grapevine to Plasmoparaviticola induced by azoxystrobin and Pseudomonas fluorescens. Int J Sustainable Agric. 3:30–38.
  • Aslam M, Razaq M, Ahmad F, Faheem M, Akhtar W. 2004. Population of aphids (Schizaphis graminum R) on different varieties of wheat (Triticum aestivum L). Intl J Agric Bio. l6:974–977.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060
  • Baublis A, Decker EA, Clydesdale FM. 2000. Antioxidant effect of aqueous extracts from wheat based ready-to-eat breakfast cereals. Food Chem. 68:1–6. doi: 10.1016/S0308-8146(99)00142-9
  • Bernards M, Bastrup-Spohr L. 2008. Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller A, editor. Induced plant resistance to herbivory. NY: Springer-Verlag; p. 189–211.
  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P. 2009. Defensive role of tomato polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol. 35:28–38. doi: 10.1007/s10886-008-9571-7
  • Burrell MM, Rees TA. 1974. Metabolism of phenylalanine and tyrosine by rice leaves infected by Piricularia oryzae. Physiol Plant Pathol. 4:497–508. doi: 10.1016/0048-4059(74)90035-6
  • Chander S. 1996. Aphid infestation of wheat in relation to climatic factors and predators. J Annals Plant Protect Sci. 4:148–150.
  • Deponte M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochem Biophys Acta. 1830:3217–3266. doi: 10.1016/j.bbagen.2012.09.018
  • Desingh R, Kanagaraj G. 2007. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen Plant Physiol. 33:221–234.
  • Dixon RA, Paiva N. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7:1085–1097. doi: 10.1105/tpc.7.7.1085
  • Esterbauer H, Grill D. 1978. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physio. 61:119–121. doi: 10.1104/pp.61.1.119
  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F. 2008. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54:374–381.
  • Gholizadeh A, Kumar M, Balasubrahmanyam A, Sharma S, Narwal S, Lodha ML, Kapoor HC. 2004. Antioxidant activity of antiviral proteins from Celosia cristata. J Plant Biochem Biotechnol. 13:13–18. doi: 10.1007/BF03263184
  • Gill RS, Gupta K, Taggar GK, Taggar MS. 2010. Review article: role of oxidative enzymes in plant defenses against insect herbivory. Acta Phyto Pathol Entomol Hung. 45:277–290. doi: 10.1556/APhyt.45.2010.2.4
  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV. 1992. Condensed tannin levels and resistance in groundnuts (Arachis hypogoea (L.) against Aphis craccivora (Koch). Phytochemistry. 31:3795–3799. doi: 10.1016/S0031-9422(00)97530-7
  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 90:1629–1633. doi: 10.1073/pnas.90.4.1629
  • Hahlbrock K, Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Physiol Plant Mol Biol. 40:347–369. doi: 10.1146/annurev.pp.40.060189.002023
  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MA. 2013. Prospects of doubling global wheat yields. Food Energy Secur. 2:34–48. doi: 10.1002/fes3.15
  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments. Plant Signal Behav. 7:1456–1466. doi: 10.4161/psb.21949
  • Helmi A, Mohamed HI. 2016. Biochemical and ultrastructural changes of some tomato cultivars after infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiyah, Egypt. Gesunde Pflanzen. 68:41–50. doi: 10.1007/s10343-016-0361-9
  • Jarosik V, Honek A, Tichopad A. 2003. Comparison of field population growths of three cereal aphid species on winter wheat. Plant Protect Sci. 39:61–64.
  • Kaur R, Gupta AK., Taggar GK. 2014. Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiol Plant. 36:1513–1527. doi: 10.1007/s11738-014-1528-6
  • MacDonald MJ, D’Cunha GB. 2007. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol. 85:273–282. doi: 10.1139/O07-018
  • Maffei ME, Mithöfer A, Boland W. 2007. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phyto Chem. 68:2946–2959.
  • Mai VC, Drzewiecka K, Jeleń H, Narożna D, Rucińska-Sobkowiak R, Kęsy J, Floryszak-Wieczorek J, Gabryś B, Morkunas I. 2014. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222:1–12. doi: 10.1016/j.plantsci.2014.01.011
  • Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x
  • Matysik J, Alia, Bhalu B, Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 82:525–532.
  • Miller RM, Smith AW. 1998. The greenbug aphid and its control. Fact sheet extension horticulture and crop sciences. Ohio State Univ Ext. Fact Sheet, 43210–1086.
  • Mishra S, Jha AB, Dubey RS. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma. 248:565–577. doi: 10.1007/s00709-010-0210-0
  • Muhammad W, Nasir M, Abbas SK., Irshad M, Abbas MW, Nawaz A, Rehman A. 2013. Resistance pattern against aphid (Diuraphis noxia) in different wheat varieties/lines at district Layyah. Acad J Ent. 6:116–120.
  • National Agricultural Statistics Service (NASS). 2015. Agricultural Statistics Board, USDA (quoted from www.nue.osstate.edu/crop-information/world-wheat-production.htm).
  • Package of practices for crops of Punjab, Rabi. 2014. Ludhiana: Punjab Agricultural University.
  • Raj SN, Sarosh BR, Shetty HS. 2006. Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet Downy mildew disease. Funct Plant Biol. 33:563–571. doi: 10.1071/FP06003
  • Ritter H, Schulz GE. 2004. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell. 16:3426–3436. doi: 10.1105/tpc.104.025288
  • Robbins CT, Hanley TA, Hagerman AE, Hjeljord O, Baker DL, Schwartz CC, Mautz WW. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology. 68:98–107. doi: 10.2307/1938809
  • Sadasivam S, Manickam A. 1992. Biochemical methods for agricultural sciences. New Delhi: Wiley Eastern; p. 187–188.
  • Sarwar H, Sarwar M, Jamil FF. 2006. Role of polyphenoloxidase and catalase in ascochyta blight resistance in Chickpea. Pak J Bot. 35:111–115.
  • Sharma P, Dubey RS. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46:209–221. doi: 10.1007/s10725-005-0002-2
  • Sharma N, Garg V. 2009. Antihyperglycemic and antioxidative potential of hydroalcoholic extract of Butea monosperma Lam flowers in alloxan-induced diabetic mice. Indian J Exp Biol. 47:571–576.
  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U. 2009. Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul. 58:107–117. doi: 10.1007/s10725-008-9356-6
  • Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 28:1057–1060. doi: 10.1016/0031-9422(89)80182-7
  • Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric. 10:63–68. doi: 10.1002/jsfa.2740100110
  • Thackray DJ, Diggle AJ, Jones RAC. 2009. BYDV PREDICTOR: a simulation model to predict aphid arrival, epidemics of Barley yellow dwarf virus and yield losses in wheat crops in a Mediterranean-type environment. Plant Path. 58:186–202. doi: 10.1111/j.1365-3059.2008.01950.x
  • Torres MA. 2010. ROS in biotic interactions. Physiol Plant. 138:414–429. doi: 10.1111/j.1399-3054.2009.01326.x
  • Usha Rani P, Jyothsna Y. 2010. Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol. 32:695–701. doi: 10.1007/s11738-009-0449-2
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 7:1306–1320. doi: 10.4161/psb.21663
  • Yu L, Perret J, Harris M, Wilson J, Haley S. 2003. Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J Agri Food Chem. 51:1566–1570. doi: 10.1021/jf020950z