2,302
Views
12
CrossRef citations to date
0
Altmetric
Plant-Insect Interactions

Activity of defense related enzymes and gene expression in pigeon pea (Cajanus cajan) due to feeding of Helicoverpa armigera larvae

, , , , , & show all
Pages 231-238 | Received 16 Feb 2018, Accepted 15 Apr 2018, Published online: 05 May 2018

References

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science. 276:945–949. doi: 10.1126/science.276.5314.945
  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J. 2000. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Resh Comm. 277:305–310. doi: 10.1006/bbrc.2000.3672
  • Armes NJ, Bond GS, Cooters RJ. 1992. The laboratory culture and development of Helicoverpa armigera. Natural Resources Institute Bulletin No. 57. Chatham (UK): Natural Resources Institute.
  • Arnnok P, Ruangviriyachai C, Mahachai R, Techawongstien S, Chanthai S. 2010. Optimization and determination of polyphenol oxidase and peroxidase activities in hot pepper (Capsicum annuum L.) pericarb. Intl Food Res J. 17:385–392.
  • Bergey DR, Orozco-Cardenas M, De Moura DS, Ryan CA. 1999. A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA. 96(4):1756–1760. doi: 10.1073/pnas.96.4.1756
  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol. 35:28–38. doi: 10.1007/s10886-008-9571-7
  • Bonasera JM, Kim JF, Beer SV. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol. 6:23–34. doi: 10.1186/1471-2229-6-23
  • Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC. 1995. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109:445–455. doi: 10.1104/pp.109.2.445
  • Casaretto JA, Zúñiga GE, Corcuera LJ. 2004. Abscisic acid and jasmonic acid affect proteinase inhibitor activities in barley leaves. J Plant Physiol. 161:389–396. doi: 10.1078/0176-1617-01236
  • Chakraborty U, Chakraborty N. 2005. Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica. 33:88–96. doi: 10.1007/BF02980930
  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK. 2007. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 145:890–904. doi: 10.1104/pp.107.103325
  • Coley PD. 1980. Effects of leaf age and plant life history patterns on herbivory. Nature. 284:545–546. doi: 10.1038/284545a0
  • Constabel CP, Ryan CA. 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochem. 47:507–511. doi: 10.1016/S0031-9422(97)00539-6
  • Constabel CP, Yip L, Patton JJ, Christopher ME. 2000. Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol. 124:285–296. doi: 10.1104/pp.124.1.285
  • Dangl JL, Dietrich RA, Thomas H. 2000. Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R, editor. Biochemistry and molecular biology of plants. Rockville, MD: American Society of Plant Physiologists Press; p. 1044–1100.
  • Délano-Frier JP, Martínez-Gallardo NA, Martínez-de la VO, Salas-Araiza MD, Barbosa-Jaramillo ER, Torres A, Vargas P, Borodanenko A. 2004. The effect of exogenous jasmonic acid on induced resistance and productivity in amaranth (Amaranthus hypochondriacus) is influenced by environmental conditions. J Chem Ecol. 30(5):1001–1034. doi: 10.1023/B:JOEC.0000028464.36353.bb
  • De Vos M, Van Oosten VR, Van Poecke RMP. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant–Microbe Interact. 18:923–937. doi: 10.1094/MPMI-18-0923
  • Duffey SS, Felton GW. 1991. Enzymatic antinutritive defenses of the tomato plant against insects. In: Hedin PA, editor. Naturally occurring pest bioregulators. Washington, DC: ACS Press; p. 167–197.
  • Felton GW, Donato KK, Vecchio RJD, Duffey SS. 1989. Activation of foliar oxidases by insect feeding reduces nutritive quality of dietary protein for foliage for noctuid herbivores. J Chem Ecol. 15:2667–2694. doi: 10.1007/BF01014725
  • Felton GW, Duffey SS. 1992. Avoidance of anti-nutritive plant defense: role of midgut pH in Colorado potato beetle. J Chem Ecol. 18:571–583. doi: 10.1007/BF00987820
  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol Mol Plant Pathol. 54:97–114. doi: 10.1006/pmpp.1998.0192
  • Franco OL, Rigden DJ, Melo FR, Grossi-De-Sá MF. 2002. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur J Biochem. 269(2):397–412. doi: 10.1046/j.0014-2956.2001.02656.x
  • Funk CJ. 2001. Alkaline phosphatase activity in white-fly salivary glands and saliva. Archives of Insect Biochem Physiol. 46:165–174. doi: 10.1002/arch.1026
  • Garreton V, Carpinelli J, Jordana X, Holuigue L. 2002. The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130:1516–1526. doi: 10.1104/pp.009886
  • Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK. 1998. Chickpea defensive proteinase inhibitors can be inactivated by pod borer gut proteinases. Plant Physiol. 116:393–401. doi: 10.1104/pp.116.1.393
  • Hägg JF, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. Int J Mol Sci. 14(5):10242–10297. doi: 10.3390/ijms140510242
  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 125:711–717. doi: 10.1104/pp.125.2.711
  • Haruta M, Pedersenb JA, Constabela CP. 2001. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiol Plantarum. 112:552–558. doi: 10.1034/j.1399-3054.2001.1120413.x
  • Hermosa MR, Turrà D, Fogliano V, Monte E, Lorito M. 2006. Identification and characterization of potato protease inhibitors able to inhibit pathogenicity and growth of Botrytis cinerea. Physiol Mol Plant Pathol. 68:138–148. doi: 10.1016/j.pmpp.2006.09.004
  • Hermsmeier D, Schittko U, Baldwin IT. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol. 125:683–700. doi: 10.1104/pp.125.2.683
  • Hughes MA, Dunn MA, Pearce RS, White AJ, Zhang L. 1992. An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 15:861–865. doi: 10.1111/j.1365-3040.1992.tb02155.x
  • Jabs T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol. 57:231–245. doi: 10.1016/S0006-2952(98)00227-5
  • Jacobson MD, Weil M, Raff MC. 1997. Programmed cell death in animal development. Cell. 88:347–354. doi: 10.1016/S0092-8674(00)81873-5
  • Jung HW, Kim W, Hwang BK. 2003. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant, Cell and Environ. 26:915–928. doi: 10.1046/j.1365-3040.2003.01024.x
  • Kansal R, Kumar M, Kuhar K, Gupta RN, Subrahmanyam B, Koundal KR, Gupta VK. 2008. Purification and characterization of trypsin inhibitor from Cicer arietinum L. and its efficacy against Helicoverpa armigera. Brazilian J Plant Physiol. 20(4):313–322. doi: 10.1590/S1677-04202008000400007
  • Karban R, Baldwin IT. 1997. Induced responses to herbivory. Chicago: University of Chicago Press.
  • Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291:2141–2144. doi: 10.1126/science.291.5511.2141
  • Kessler A, Baldwin IT. 2002. Plant responses to insect herbivory, the emerging molecular analysis. Annual Review of Plant Biol. 53:299–328. doi: 10.1146/annurev.arplant.53.100301.135207
  • Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y. 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 34:434–443. doi: 10.1111/j.1365-3040.2010.02253.x
  • Kluh I, Horn M, Hýblová J, Hubert J, Dolečková-Marešová L, Voburka Z. 2005. Inhibitory specificity and insecticidal selectivity of α-amylase inhibitor from Phaseolus vulgaris. Phytochem. 66(1):31–39. doi: 10.1016/j.phytochem.2004.11.001
  • Koornneef A, Pieterse CMJ. 2008. Cross talk in defense signaling. Plant Physiol. 146:839–844. doi: 10.1104/pp.107.112029
  • Korth KL, Dixon RA. 1997. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol. 115:1299–1305. doi: 10.1104/pp.115.4.1299
  • Kumari AD, Reddy DJ, Sharma HC. 2006. Effect of Grain yield in pigeonpea genotypes with different levels of resistance to the pod borer, Helicoverpa armigera. Indian J of Plant Protech. 34(2):184–187.
  • Kunkel BN, Brooks DM. 2002. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 5:325–331. doi: 10.1016/S1369-5266(02)00275-3
  • Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol. 48:251–275. doi: 10.1146/annurev.arplant.48.1.251
  • Lawrence SD, Novak NG, Ju CJ, Cooke JE. 2008. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol. 34:1013–1025. doi: 10.1007/s10886-008-9507-2
  • Lee S, Kim SG, Park CM. 2010. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol. 188:626–637. doi: 10.1111/j.1469-8137.2010.03378.x
  • Li JT, Qiu ZB, Zhang XW, Wang LS. 2011. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant. 33:835–842. doi: 10.1007/s11738-010-0608-5
  • Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, et al. 2012. The cysteine rich nechrotrophic effector SnTox1 produced by Stagnospora noduram triggers susceptibility of wheat lines harboring Snn1. PLos Pathog. 8(1):e1002467. doi: 10.1371/journal.ppat.1002467
  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119:1091–1100. doi: 10.1104/pp.119.3.1091
  • López-Cruza J, Finitia I, Fernández-Crespob E, Crespo-Salvadora O, García-Agustínb P, González-Boscha C. 2014. Absence of endo-1,4-β-glucanase KOR1 alters the Jasmonate-dependent defense response to Pseudomonas syringae in Arabidopsis. Journal of Plant Physiol. 171(16):1524–1532. doi: 10.1016/j.jplph.2014.07.006
  • Maffei ME, Mithöfer A, Boland W. 2007. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry. 68:2946–2959. doi: 10.1016/j.phytochem.2007.07.016
  • Major IT, Constabel CP. 2006. Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol. 172:617–635. doi: 10.1111/j.1469-8137.2006.01877.x
  • Majumder ND, Singh F. 2005. Pigeonpea improvement in India. Souvenir, 4th international food legume research conference on food legumes for nutritional security and sustainable agriculture; Oct 18–22; New Delhi (India). p. 53–65.
  • Mattiacci L, Dicke M, Posthumus MA. 1995. Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host searching parasitic wasps. Proc Natl Acad Sci USA. 92:2036–2040. doi: 10.1073/pnas.92.6.2036
  • Mayer AM. 1986. Polyphenol oxidases in plants-recent progress. Phytochem. 26:11–20. doi: 10.1016/S0031-9422(00)81472-7
  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA. 94:5473–5477. doi: 10.1073/pnas.94.10.5473
  • Mozuruk J, Hunnicutt LE, Cave RD, Hunter WB, Bauscher MG. 2006. Profiling transcriptional changes in Citrus sinensis (L.) Osbeck challenged by herbivory from the xylem feeding leaf hopper Homalodisca coagulata (Say) by cDNA macroarray analysis. Plant Sci. 170:1068–1080. doi: 10.1016/j.plantsci.2006.01.014
  • Nafie E, Hathout T, Mokadem ASA. 2011. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. Cells. Braz J Plant Physiol. 23(2):161–174. doi: 10.1590/S1677-04202011000200008
  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell. 13:179–191. doi: 10.1105/tpc.13.1.179
  • Orozco-Cárdenas ML, Ryan CA. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA. 96:6553–6557. doi: 10.1073/pnas.96.11.6553
  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cell. Nature. 406:731–734. doi: 10.1038/35021067
  • Peng JY, Li ZH, Xiang H, Huang JH, Jia SH, Miao XX, Haung YP. 2005. Preliminary studies on differential defense responses induced during plant communication. Cell Res. 15:187–192. doi: 10.1038/sj.cr.7290285
  • Rakwala R, Agrawala GK, Jwa NS. 2001. Characterization of a rice (Oryza sativa L.) Bowman Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene. 263:189–198. doi: 10.1016/S0378-1119(00)00573-4
  • Regente MC, Giudici AM, Villalain J, De la Canal L. 2005. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol. 40:183–189. doi: 10.1111/j.1472-765X.2004.01647.x
  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell. 16:3132–3147. doi: 10.1105/tpc.104.026120
  • Reymond P, Weber H, Damond M, Farmer EE. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 12:707–720. doi: 10.1105/tpc.12.5.707
  • Ryan CA. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Ann Rev Phytopathol. 28:425–449. doi: 10.1146/annurev.py.28.090190.002233
  • Sharma OP, Gopali JB, Yelshetty S, Bambawale OM, Garg DK, Bhosle BB. 2010. Pests of pigeon pea and their management-NCIPM-LBS Building-IARI-New Delhi-India.
  • Singh A, Singh IK, Verma PK. 2008. Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defense regulators correlate with reduced insect performance. J Exp Bot. 59(9):2379–2392. doi: 10.1093/jxb/ern111
  • Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS. 2005. In vivo and In vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica Biophysica Acta. 1722:156–167. doi: 10.1016/j.bbagen.2004.12.017
  • Thipyapong P, Steffens JC. 1997. Tomato polyphenol oxidase – differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol. 115:409–418. doi: 10.1104/pp.115.2.409
  • Thomma B, Eggermont K, Pennickx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA. 95:15107–15111. doi: 10.1073/pnas.95.25.15107
  • Trevino MB, O’Connell MA. 1998. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii shows different developmental patterns of expression. Plant Physiol. 116:1461–1468. doi: 10.1104/pp.116.4.1461
  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 29(7):1449–1459. doi: 10.1111/j.1365-3040.2006.01530.x
  • Verhage A, Van Wees SCM, Pieterse CMJ. 2010. Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol. 154:536–540. doi: 10.1104/pp.110.161570
  • Wang X, Hu LC, Zhou GX, Cheng JA, Lou YG. 2011. Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). Chinese Sci Bull. 56(22):2351–2358. doi: 10.1007/s11434-011-4568-y
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal Behavior. 7(10):1306–1320. doi: 10.4161/psb.21663
  • War AR, Paulraj MG, War MY, Ignacimuthu S. 2011. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behavior 6(11):1787–1792. doi: 10.4161/psb.6.11.17685
  • Winz RA, Baldwin IT. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Part IV. Insect-induced ethylene reduces its jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol. 125:2189–2202. doi: 10.1104/pp.125.4.2189
  • Zhang Y, Xu S, Din P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z, et al. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA. 107(42):18220–18225. doi: 10.1073/pnas.1005225107
  • Zhua YC, Abel CA, Chen MS. 2007. Interaction of Cry1Ac toxin (Bacillus thuringiensis) and proteinase inhibitors on the growth, development, and midgut proteinase activities of the bollworm, Helicoverpa zea. Pest Biochem and Physiol. 87:39–46. doi: 10.1016/j.pestbp.2006.05.004