2,366
Views
12
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping

, , , , &
Pages 10-20 | Received 26 Aug 2018, Accepted 15 Nov 2018, Published online: 04 Dec 2018

References

  • Adiku SG, Ozier-Lafontaine H, Bajazet T. 2001. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions. Plant Soil. 235:85–94. doi: 10.1023/A:1011847214706
  • Aerts R. 2002. The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: van der Heijden MGA, Sanders IR, editors. Mycorrhizal Ecology. Berlin: Springer-Verlag; p. 117–133.
  • Arbuckle JL. 2006. Amos (version 7.0) [computer program]. Chicago: SPSS.
  • Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11:3–42. doi: 10.1007/s005720100097
  • Augé RM, Toler HD, Saxton AM. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 25:13–24. doi: 10.1007/s00572-014-0585-4
  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM. 2014. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe In. 27:349–363. doi: 10.1094/MPMI-09-13-0268-R
  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen E, Prieur L, Justes E. 2015. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev. 35:911–935. doi: 10.1007/s13593-014-0277-7
  • Bertness MD, Callaway R. 1994. Positive interactions in communities. Trends Ecol Evol. 9:191–193. doi: 10.1016/0169-5347(94)90088-4
  • Bever JD. 2002. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc Roy Soc B Biol Sci. 269:2595–2601. doi: 10.1098/rspb.2002.2162
  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 25:468–478. doi: 10.1016/j.tree.2010.05.004
  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PP, Jones HG, Karley AJ. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206:107–117. doi: 10.1111/nph.13132
  • Brooker RW, Karley AJ, Newton AC, Pakeman RJ, Schöb C. 2016. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct Ecol. 30:98–107. doi: 10.1111/1365-2435.12496
  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JM, Anthelme F. 2008. Importance: an overlooked concept in plant interaction research. J Ecol. 96:703–708. doi: 10.1111/j.1365-2745.2008.01373.x
  • Brück H, Payne W, Sattelmacher B. 2000. Effects of phosphorus and water supply on yield, transpirational water-use efficiency, and carbon isotope discrimination of pearl millet. Crop Sci. 40:120–125. doi: 10.2135/cropsci2000.401120x
  • Chen G, Kong X, Gan Y, Zhang R, Feng F, Yu A, Zhao C, Wan S, Chai Q. 2018. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping. Sci Rep. 8:10494. doi: 10.1038/s41598-018-28612-6
  • Chu Q, Wang X, Yang Y, Chen F, Zhang F, Feng G. 2013. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza. 23:497–505. doi: 10.1007/s00572-013-0492-0
  • Collins CD, Foster BL. 2009. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology. 90:2567–2576. doi: 10.1890/08-1560.1
  • Connolly R. 1998. Modelling effects of soil structure on the water balance of soil-crop systems: a review. Soil Tillage Res. 48:1–19. doi: 10.1016/S0167-1987(98)00128-7
  • de Araujo Pereira AP, Santana MC, Bonfim JA, de Lourdes Mescolotti D, Cardoso ELBN. 2018. Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol. 128:1–11. doi: 10.1016/j.apsoil.2018.03.015
  • Duchene O, Vian JF, Celette F. 2017. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agr Ecosyst Environ. 240:148–161. doi: 10.1016/j.agee.2017.02.019
  • Egerton-Warburton LM, Querejeta JI, Allen MF. 2007. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot. 58:1473–1483. doi: 10.1093/jxb/erm009
  • Ehrmann J, Ritz K. 2014. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil. 376:1–29. doi: 10.1007/s11104-013-1921-8
  • Eisenhauer N. 2012. Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil. 351:1–22. doi: 10.1007/s11104-011-1027-0
  • Fort F, Cruz P, Catrice O, Delbrut A, Luzarreta M, Stroia C, Jouany C. 2015. Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage. Environ Exp Bot. 110:62–72. doi: 10.1016/j.envexpbot.2014.09.007
  • Gao Y, Duan A, Sun J, Li F, Liu Z, Liu H, Liu Z. 2009. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crop Res. 111:65–73. doi: 10.1016/j.fcr.2008.10.007
  • Hartnett DC, Wilson GW. 1999. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology. 80:1187–1195. doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
  • Hauggaard-Nielsen H, Jensen ES. 2005. Facilitative root interactions in intercrops. Plant Soil. 274:237–250. doi: 10.1007/s11104-004-1305-1
  • He Q, Bertness MD, Altieri AH. 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett. 16:695–706. doi: 10.1111/ele.12080
  • Hodge A, Fitter AH. 2013. Microbial mediation of plant competition and community structure. Funct Ecol. 27:865–875. doi: 10.1111/1365-2435.12002
  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett. 13:394–407. doi: 10.1111/j.1461-0248.2009.01430.x
  • Jakobsen I, Abbott L, Robson A. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120:371–380. doi: 10.1111/j.1469-8137.1992.tb01077.x
  • Kaya C, Higgs D, Kirnak H, Tas I. 2003. Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil. 253:287–292. doi: 10.1023/A:1024843419670
  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD. 2013. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 197:617–630. doi: 10.1111/nph.12011
  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA. 104:11192–11196. doi: 10.1073/pnas.0704591104
  • Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA. 113:6496–6501. doi: 10.1073/pnas.1523580113
  • Li L, Sun JH, Zhang FS, Guo TW, Bao XG, Smith FA, Smith SE. 2006. Root distribution and interactions between intercropped species. Oecologia. 147:280–290. doi: 10.1007/s00442-005-0256-4
  • Li L, Tilman D, Lambers H, Zhang FS. 2014. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203:63–69. doi: 10.1111/nph.12778
  • Liu X, Burslem DF, Taylor JD, Taylor AF, Khoo E, Majalap-Lee N, Helgason T, Johnson D. 2018. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol Lett. 21:713–723. doi: 10.1111/ele.12939
  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature. 412:72–76. doi: 10.1038/35083573
  • Maestre FT, Callaway RM, Valladares F, Lortie CJ. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol. 97:199–205. doi: 10.1111/j.1365-2745.2008.01476.x
  • Mao L, Zhang L, Li W, van der Werf W, Sun J, Spiertz H, Li L. 2012. Yield advantage and water saving in maize/pea intercrop. Field Crop Res. 138:11–20. doi: 10.1016/j.fcr.2012.09.019
  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GF, van der Heijden MGA, Kardol P. 2018. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol. 33:129–142. doi: 10.1016/j.tree.2017.11.005
  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x
  • Meng LB, Zhang AY, Wang F, Han XG, Wang DJ, Li SM. 2015. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci. 6:339.
  • Merrild MP, Ambus P, Rosendahl S, Jakobsen I. 2013. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol. 200:229–240. doi: 10.1111/nph.12351
  • Mpelasoka F, Hennessy K, Jones R, Bates B. 2008. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int J Climatology. 28:1283–1292. doi: 10.1002/joc.1649
  • Muler AL, Oliveira RS, Lambers H, Veneklaas EJ. 2014. Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia. 174:23–31. doi: 10.1007/s00442-013-2747-z
  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A. 2009. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol. 46:683–691. doi: 10.1111/j.1365-2664.2009.01653.x
  • Qiao X, Bei S, Li H, Christie P, Zhang F, Zhang J. 2016. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant Soil. 406:173–185. doi: 10.1007/s11104-016-2863-8
  • Recchia GH, Konzen ER, Cassieri F, Caldas DGG, Tsai SM. 2018. Arbuscular mycorrhizal symbiosis leads to differential regulation of drought-responsive genes in tissue-specific root cells of common bean. Front Microbiol. 9:1339. doi: 10.3389/fmicb.2018.01339
  • Rillig MC, Mardatin NF, Leifheit EF, Antunes PM. 2010. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem. 42:1189–1191. doi: 10.1016/j.soilbio.2010.03.027
  • Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytol. 171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x
  • Rillig MC, Steinberg PD. 2002. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem. 34:1371–1374. doi: 10.1016/S0038-0717(02)00060-3
  • Ruiz-Lozano JM. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza. 13:309–317. doi: 10.1007/s00572-003-0237-6
  • Ruiz-Lozano JM, Aroca R. 2010. Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y, editor. Arbuscular mycorrhizas: physiology and function. Berlin: Springer; p. 239–256.
  • Sardans J, Peñuelas J. 2004. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil. 267:367–377. doi: 10.1007/s11104-005-0172-8
  • Sawwan J, Shibli RA, Swaidat I, Tahat M. 2000. Phosphorus regulates osmotic potential and growth of African violet under in vitro-induced water deficit. J Plant Nutr. 23:759–771. doi: 10.1080/01904160009382057
  • Smith SE, Facelli E, Pope S, Smith FA. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil. 326:3–20. doi: 10.1007/s11104-009-9981-5
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. London: Academic Press.
  • Smucker A, Aiken R. 1992. Dynamic root responses to water deficits. Soil Sci. 154:281–289. doi: 10.1097/00010694-199210000-00004
  • Sun F, Lu S. 2014. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sci. 177:26–33. doi: 10.1002/jpln.201200639
  • Szumigalski AR, Van Acker RC. 2008. Land equivalent ratios, light interception, and water use in annual intercrops in the presence or absence of in-crop herbicides. Agron J. 100:1145–1154. doi: 10.2134/agronj2006.0343
  • Thomas RL, Sheard RW, Moyer JR. 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J. 59:240–243. doi: 10.2134/agronj1967.00021962005900030010x
  • Tilman D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology. 80:1455–1474.
  • van der Heijden MG, Bardgett RD, Van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x
  • van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 396:69–72. doi: 10.1038/23932
  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205:1406–1423. doi: 10.1111/nph.13288
  • van der Heijden MG, Wiemken A, Sanders IR. 2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol. 157:569–578. doi: 10.1046/j.1469-8137.2003.00688.x
  • Vandermeer JH. 1992. The ecology of intercropping. Cambridge: Cambridge University Press.
  • Vogelsang KM, Reynolds HL, Bever JD. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172:554–562. doi: 10.1111/j.1469-8137.2006.01854.x
  • Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MG. 2011. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology. 92:1303–1313. doi: 10.1890/10-1915.1
  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A. 2012. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159:789–797. doi: 10.1104/pp.112.195727
  • Waraich EA, Ahmad R, Ashraf MY, Saifullah AM. 2011. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agr Scand B-S. 61:291–304.
  • Weremijewicz J, LdSLO S, Janos DP. 2016. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212:461–471. doi: 10.1111/nph.14041
  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett. 12:452–461. doi: 10.1111/j.1461-0248.2009.01303.x
  • Xu B, Li F, Shan L. 2008. Switchgrass and milkvetch intercropping under 2: 1 row-replacement in semiarid region, northwest China: aboveground biomass and water use efficiency. Eur J Agron. 28:485–492. doi: 10.1016/j.eja.2007.11.011
  • Yang C, Huang G, Chai Q, Luo Z. 2011. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crop Res. 124:426–432. doi: 10.1016/j.fcr.2011.07.013
  • Zegada-Lizarazu W, Izumi Y, Iijima M. 2006. Water competition of intercropped pearl millet with cowpea under drought and soil compaction stresses. Plant Prod Sci. 9:123–132. doi: 10.1626/pps.9.123
  • Zhu YG, Miller RM. 2003. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci. 8:407–409. doi: 10.1016/S1360-1385(03)00184-5