7,496
Views
66
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I – selection approaches

, , , ORCID Icon, & ORCID Icon
Pages 30-44 | Received 27 Jun 2018, Accepted 18 Nov 2018, Published online: 04 Dec 2018

References

  • Ahmadizadeh M, Valizadeh M, Shahbazi H, Nori A. 2002. Behavior of durum wheat genotypes under normal irrigation and drought stress conditions in the greenhouse. Afr J Biotechnol. 11:1912–1923.
  • Akcura M, Ceri S. 2011. Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Žemdirbystė Agric. 98:157–166.
  • Asharaf M. 2010. Inducing drought tolerance in plants: recent advances. Biotech Adv. 28:199–238. doi: 10.1016/j.biotechadv.2009.11.007
  • Bandurska H, Stroiński A. 2003. ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare Maresi) barley genotypes under water deficit conditions. Acta Physiol Plant. 25:55–61. doi: 10.1007/s11738-003-0036-x
  • Barrs HD. 1986. Determination of water deficit in plant tissues. In: Kozlowski TT, editor. Water deficit and plant growth. Vol.1. New York: Academic Press; p. 235–368.
  • Berkowitz GA, Chen C, Gibbs M. 1983. Stromal acidification mediates in vivo water stress inhibition of nonstomatal controlled photosynthesis. Plant Physiol. 72:1123–1126. doi: 10.1104/pp.72.4.1123
  • Blum A. 1988. Plant breeding for stress environments. Boca Raton (FL): CRC Press.
  • Blum A. 1996. Crop response to drought and the interpretation of adaptation. Plant Growth Regul. 20:57–70. doi: 10.1007/BF00024010
  • Blum A. 2005. Drought resistance, water use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Austr J Agric Res. 56:1159–1168. doi: 10.1071/AR05069
  • Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21:43–47. doi: 10.2135/cropsci1981.0011183X002100010013x
  • Bouslama M, Schapauch WT. 1984. Stress tolerance in soybean. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 24:933–937. doi: 10.2135/cropsci1984.0011183X002400050026x
  • Boyer JS. 1982. Plant productivity and environment. Science. 218:443–448. doi: 10.1126/science.218.4571.443
  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio LM, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot. 89:907–916. doi: 10.1093/aob/mcf105
  • Clarke JM, McCaig TN. 1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Sci. 22:503–506. doi: 10.2135/cropsci1982.0011183X002200030015x
  • Cornic G, Massacci A. 1996. Leaf photosynthesis under drought stress. In: Baker N.R., editor. Photosynthesis and the Environment. Dordrecht: Kluwer Academic; p. 347–366.
  • Doorenbos J, Kassam AH. 1986. Yield response to water. FAO irrigation and drainage paper. Rome: Food and Agriculture Organization of the United Nations.
  • Doorenbos J, Pruit WO. 1977. Guidelines for predicting crop water requirements. FAO irrigation and drainage paper. Rome: Food and Agriculture Organization of the United Nations.
  • Drikvand R, Doosty B, Hosseinpour T. 2012. Response of rainfed wheat genotypes to drought stress using drought tolerance indices. J Agric Sci. 4:126–131.
  • Dubey R. 1997. Photosynthesis in plants under stressful conditions. In: Pessarakli M, editor. Handbook of photosynthesis. Tuscon/New York: University of Arizona/Marcel Dekker; p. 859–875.
  • Edey SN. 1977. Growing degree days and crop production in Canada. Agriculture Canada Publication 1635, Ottawa.
  • Ehlers W, Goss M. 2003. Water Dynamics in Plant Production. Wallingford: CABI Publishing.
  • Evans RO, Skagss RW, Sneed RE. 1991. Stress day index models to predict corn and soybean relative yield under high water table conditions. Trans ASAE. 5:1997–2005. doi: 10.13031/2013.31829
  • Farquhar GD, Wong SC, Evans JR, Hubiek KT. 1993. Photosynthesis and gas exchange. In: Jones HG, Flowers TJ, Jones MB, editor. Plants under stress. New York: Cambridge University Press; p. 47–70.
  • Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a plant-breeding programme. Aust J Agrie Res. 14:742–754. doi: 10.1071/AR9630742
  • Fischer RA, Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res. 29:897–907. doi: 10.1071/AR9780897
  • Fleury DS, Kuchel H, Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot. 61:3211–3222. doi: 10.1093/jxb/erq152
  • Flexas J, Medrano H. 2002. Energy dissipation in C3 plants under drought. Funct Plant Biol. 29:1209–1215. doi: 10.1071/FP02015
  • Geravandi M, Farshadfar E, Kahrizi D. 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russ J Plant Physiol. 58:69–75. doi: 10.1134/S1021443711010067
  • Gerik TJ, Eastin JD. 1985. Temperature effects on dark respiration among diverse sorghum genotypes. Crop Sci. 25:957–961. doi: 10.2135/cropsci1985.0011183X002500060014x
  • Golabadi MA, Arzani SA, Maibodym M. 2006. Assessment of drought tolerance in segregating populations in durum wheat. Afr J Agric Res. 1:162–171.
  • Golbashy M, Ebrahimi M, Khorasani SK, Choucan R. 2010. Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. Afr J Agric Res. 5:2714–2719.
  • Gomez F, Oliva MA, Mielke MS, de_Almeida AAF, Leita HG, Aquino LA. 2008. Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos macifera L. ‘‘nana’’ palm under well-watered conditions or recovering from drought stress. Environ Exp Bot. 62:195–204. doi: 10.1016/j.envexpbot.2007.08.006
  • Grzesiak S. 1990. Reaction to drought of inbreds and hybrids of maize (Zea mays L.) as evaluated in field and greenhouse experiments. Maydica. 35:303–331.
  • Grzesiak MT, Hura K, Jurczyk B, Hura T, Rut G, Szczyrek P, Grzesiak S. 2017. Physiological markers of stress susceptibility in maize and triticale under different soil compaction and/or soil water contents. J Plant Interaction. 12:355–372. DOI: 10.1080/17429145.2017.1370143.
  • Grzesiak MT, Marcińska I, Janowiak F, Rzepka A, Hura T. 2012. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant. 34:1757–1764. doi: 10.1007/s11738-012-0973-3
  • Hanson AD, Nelson ChE. 1985. Water adaptation of crop to drought. In: Carlson PS, editor. The biology of crop productivity. New York: Academic Press; p. 79–149.
  • Haupt-Herting S, Fock HP. 2002. Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot. 89:851–859. doi: 10.1093/aob/mcf023
  • Hillel D, van Bavel CHM. 1976. Simulation of profile water storage as related to soil hydraulic properties. Soil Sci Soc Am J. 40:807–815. doi: 10.2136/sssaj1976.03615995004000060009x
  • Hisir Y, Kara R, Dokuyucu T. 2012. Evaluation of oat (Avena sativa L.) genotypes for grain yield and physiological traits. Žemdirbystė Agric. 99:55–60.
  • Hura T, Hura K, Grzesiak MT, Rzepka A. 2007. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiol Plant. 29:103–113. doi: 10.1007/s11738-006-0013-2
  • Iezzoni AF, Pritts MP. 1991. Applications of principal component analysis to horticultural research. HortScience. 26:334–338. doi: 10.21273/HORTSCI.26.4.334
  • Jackson MB, Ram PC. 2003. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany. 91:227–241. doi: 10.1093/aob/mcf242
  • Khalili M, Kazemi M, Moghaddam A, Shakiba M. 2004. Evaluation of drought tolerance indices at different growth stages of late-maturing corn genotypes. Proceedings of the 8th Iranian Congress of Crop Science and Breeding, Rasht. p. 298.
  • Khayatnezhad M, Hasanuzzaman M, Gholamin R. 2011. Assessment of yield and yield components and drought tolerance at end-of season drought condition on corn hybrids (Zea mays L.). Afr J Crop Sci. 5:493–500.
  • King J. 2011. Reaching for the sun. How plant work. Part IV Stress, defense, and decline. Cambridge: Cambridge University Press; p. 185–244.
  • Kono Y, Yamauchi A, Kawamura AN, Tatsumi J. 1987. Interspecific differences of the capacities of waterlogging and drought tolerance among summer cereals. Jpn J Crop Sci. 56:115–129. doi: 10.1626/jcs.56.115
  • Kpoghomou BK, Sapra VT, Beyl CA. 1990. Screening for drought tolerance: soybean germination and its relationship to seedling response. J Agron Crop Sci. 164:153–159. doi: 10.1111/j.1439-037X.1990.tb00801.x
  • Larsson S, Górny AG. 1988. Grain yield and drought resistance indices of oat cultivars in field rain shelter and laboratory experiments. J Agron Crop Sci. 161:277–286. doi: 10.1111/j.1439-037X.1988.tb00668.x
  • Lawlor DW, Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plans. Plant Cell Environ. 25:275–294. doi: 10.1046/j.0016-8025.2001.00814.x
  • Levitt J. 1980. Response of plants to environmental stresses. New York (NY): Academic Press.
  • Liang Y, Zhang K, Zhao L, Liu B, Meng Q. 2010. Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica. 171:145–156. doi: 10.1007/s10681-009-0024-3
  • Lichtenthaler HK, Babani F. 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee G, editor. Chlorophyll a fluorescence, a signature of photosynthesis. Dordrecht: Springer; p. 713–736.
  • Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C. 2005. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica. 43:355–369. doi: 10.1007/s11099-005-0060-8
  • Lorens GF, Bennett JM, Loggale LB. 1987. Differences in drought resistance between two corn hybrids. I. Water relations and root length density. Agron J. 79:802–807. doi: 10.2134/agronj1987.00021962007900050009x
  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak M, Popielarska-Konieczna M, Warchoł M, Grzesiak S. 2017. Application of photochemical parameters and several indices based on phenotypical traits to assess intraspecific variation of oat (Avena sativa L.) tolerance to drought. Acta Physiol Plant. 39:153. doi: 10.1007/s11738-017-2453-2
  • Martinielio P, Lorenzoni C. 1985. Response of maize genotypes to drought tolerance tests. Maydica. 30:361–370.
  • Masle J. 2002. High soil strength: mechanical forces at play on root morphogenesis and in root: shoot signaling. In: Waisel Y, Eshel A, Kafkafi U, editor. Plant roots the hidden half. New York (NY): Marcel Dekker; p. 807–819.
  • McKersie BD, Leshem YY. 1994. Stress and stress cooping in cultivated plants. Dordrecht: Kluwer Academic Publishers.
  • McMaster GS, Wilhelm WW, Palic DB, Porter JR, Jamieson PD. 2003. Spring wheat leaf appearance and temperature: extending the paradigm? Ann Bot. 91:697–705. doi: 10.1093/aob/mcg074
  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot. 89:895–905. doi: 10.1093/aob/mcf079
  • Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends plants science. 11:15–19. doi: 10.1016/j.tplants.2005.11.002
  • Moghaddam A, Hadizadeh MH. 2002. Response of corn hybrids and their parental lines to drought using different stress tolerant indices. Iranian J Seed Seedling. 18:256–272.
  • Mohammadi R, Armion M, Kahrizi D, Amri A. 2010. Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. Int J Plant Prod. 4:11–24.
  • Muller JE, Whitsitt MS. 1996. Plant cellular response to water deficit. Plant Growth Regul. 20:41–46.
  • Nouraein M, Mohammadi SA, Aharizad S, Moghaddam M, Sadeghzadeh B. 2013. Evaluation of drought tolerance indices in wheat recombinant inbred line population. Ann Biol Res. 4:113–122.
  • Ogawa S, Valencia MO, Ishitani M, Selvaraj MG. 2014. Root system architecture variation in response to different NH4 concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol Plant. 36:2361–2372. doi: 10.1007/s11738-014-1609-6
  • Paknejad F, Nasri M, Moghadam HRT, Zahedi H, Alahmadi MF. 2007. Effects of drought stress on chlorophyll fluorescence. Acta Physiol Plant. 35:549–565.
  • Palta JP. 1990. Stress interactions at the cellular and membrane level. Hort Sci. 25:1337–1381.
  • Parihar AK, Godawat SL, Singh D, Parihar CM, Mangi L. 2012. Behavior of quality protein maize (QPM) genotypes under well irrigated and water stress conditions in subtropical climate. Maydica. 57:293–299.
  • Passioura JB, Condon AG, Richards RA. 1993. Water deficits, the development of leaf area and crop productivity. In: Smith JAC, Griffiths H, editor. Water deficits plant responses from cell to community. Oxford: BIOS Scientific Publishers; p. 253–264.
  • Rabiei E, Khodambashi M, Pirbalouti GA. 2012. The study of the drought tolerance indices of oat (Avena sativa L.). J Food Agric Environ. 10:646–648.
  • Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M. 2010. Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J Agron Crop Sci. 196:9–19. doi: 10.1111/j.1439-037X.2009.00389.x
  • Reynolds MP, Singh RP, Ibrahim A, Agech OAA, Larque-Saavedra A, Quick JS. 1998. Evaluation physiological traits to complement empirical selection for wheat in warm environments. Euphytica. 100:84–95. doi: 10.1023/A:1018355906553
  • Richards RA. 1978. Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress. III. Physiological and physicochemical characters. Aust J Agric Res. 29:495–501.
  • Royo C, Abaza M, Bianco R, del Moral LFG. 2000. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Aust J Physiol. 27:1051–1059.
  • Shangguan ZP, Shao MA. 1999. Physiological mechanism for improving crop water use in arid region. J Hydraul Eng. 10:33–37.
  • Smirnoff N, Colombe SV. 1988. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot. 39:1097–1108. doi: 10.1093/jxb/39.8.1097
  • Souza RP, Machado EC, Silva JAB, Lagoa AMMA, Silveira JAG. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot. 51:45–56. doi: 10.1016/S0098-8472(03)00059-5
  • Stanley CD. 1990. Proper use and data interpretation for plant- and soil water status measuring instrumentation: introductory remarks. HortScience. 25:1534. doi: 10.21273/HORTSCI.25.12.1534
  • Starck Z. 2005. The reactions of plants to abiotic environmental stress-acclimatization and adaptation. Grassland Sci Pol. 8:173–184 (in Polish).
  • Sullivan CHY, Ross WN. 1979. Selecting for drought and heat resistance in grain sorghum. In: Mussel H, Staples R, editor. Stress physiology in crop plant. New York (NY): Wiley; p. 263–281.
  • Szechyńska-Hebda M, Czarnocka W, Hebda M, Bernacki MJ, Karpiński S. 2016. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep. 35:527–539. doi: 10.1007/s00299-015-1901-y
  • Talebi R, Fayaz F, Naji N. 2009. Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). Gen App Plant Physiol. 35:64–74.
  • Tang AC, Kawamitsu Y, Kanechi M, Boyer JS. 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Ann Bot. 89:861–870. doi: 10.1093/aob/mcf081
  • Wang W, Vinocur B, Altman A. 2003. Plant response to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218:1–14. doi: 10.1007/s00425-003-1105-5
  • Weatherley PE. 1950. Studies of water relations of the cotton plant. I. The field measurement of water deficit in leaves. New Phytol. 49:81–87. doi: 10.1111/j.1469-8137.1950.tb05146.x
  • Williams MH, Rosenqvist E, Buchhave M. 1999. Response of potted miniature roses (Rosaxhybrida) to reduced water availability during production. J Hortic Sci Biotechnol. 74:301–308. doi: 10.1080/14620316.1999.11511113
  • Winter SR, Musick JT, Porter KB. 1988. Evaluation of screening techniques for breeding drought resistant winter wheat. Crop Sci. 28:512–516. doi: 10.2135/cropsci1988.0011183X002800030018x
  • Wright H, De Longa J, Ladab R, Prangea R. 2009. The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biol Technol. 51:193–199. doi: 10.1016/j.postharvbio.2008.07.004
  • Yamauchi A. 1993. Significance of root system structure in relation to stress tolerance in cereal crop. In: Low-input sustainable crop production system in Asia, Korean Soc. Crop Sci., Korea; p. 347–360.
  • Zabet M, Hosseinzadeh AH, Ahmadi A, Khialparast F. 2003. Effect of water stress on different traits and determination of the best water stress index in Mung Bean (Vigna radiate). Iran J Agric Sci. 34:889–898.
  • Zaheri A, Bahraminejad S. 2012. Assessment of drought tolerance in oat (Avena sativa L.) genotypes. Ann Biol Res. 3(5):2194–2201.
  • Zhang L, Mi X, Shao HB, Ma K. 2011. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil. 347:211–220. doi: 10.1007/s11104-011-0839-2