5,748
Views
42
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Plant growth-promoting rhizobacteria induce changes in Arabidopsis thaliana gene expression of nitrate and ammonium uptake genes

, , , &
Pages 224-231 | Received 01 Nov 2018, Accepted 18 Feb 2019, Published online: 15 May 2019

References

  • Abel S, Theologis A. 1996. Early genes and auxin action. Plant Physiol. 111:9–17. doi: 10.1104/pp.111.1.9
  • Andersen CL, Jensen JL, Orntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496
  • Bákonyi GÉ, Lévai L, Veres S, Tóth B, Marozsán M. 2009. Comparison of effects of different biofertilisers on early development of cucumber and wheat seedlings. Ratarstvo. 44:491–495.
  • Bashan Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv. 16:729–770. doi: 10.1016/S0734-9750(98)00003-2
  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC. 2000a. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol. 46:229–236. doi: 10.1139/w99-137
  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC. 2000b. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol. 46:229–236. doi: 10.1139/w99-137
  • Bi Y-M, Wang R-L, Zhu T, Rothstein SJ. 2007. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics. 8:281. doi: 10.1186/1471-2164-8-281
  • Biari N, Gholami A, Rahmani A. 2008. Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of lran. J Biol Sci. 8:1015–1020. doi: 10.3923/jbs.2008.1015.1020
  • Borda P, Hayward LD. 1967. Nitrogen analysis of nitrate esters by micro-dumas combustion. Anal Chem. 39:548–549. doi: 10.1021/ac60248a029
  • Bottini R, Cassan F, Piccoli P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biot. 65:497–503. doi: 10.1007/s00253-004-1696-1
  • Brimecombe MJ, De Leij FA, Lynch JM. 1999. Effect of introduced pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea. Microb Ecol. 38:387–397. doi: 10.1007/s002489901004
  • Calvo P. 2013. Effect of microbial inoculation on Nitrogen plant uptake and Nitrogen losses from soil and plant-soil systems Auburn University.
  • Dey R, Pal KK, Bhatt DM, Chauhan SM. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res. 159:371–394. doi: 10.1016/j.micres.2004.08.004
  • Egamberdiyeva D, Hoflich G. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ. 56:293–301. doi: 10.1016/S0140-1963(03)00050-8
  • Enebak SA, Wei G, Kloepper JW. 1998. Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings. Forest Sci. 44:139–144.
  • Fan X, Zhang S, Mo X, Li Y, Fu Y, Liu Z. 2017. Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere. 27(6):1027–1036. doi: 10.1016/S1002-0160(17)60379-5
  • Forde BG, Clarkson DT. 1999a. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res. 30:1–90. doi: 10.1016/S0065-2296(08)60226-8
  • Forde BG, Clarkson DT. 1999b. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res. 30:1–90. doi: 10.1016/S0065-2296(08)60226-8
  • Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman A-M, Brady SM. 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature. 563(7730):259–264. doi: 10.1038/s41586-018-0656-3
  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, et al. 2002. The regulation of nitrate and ammonium transport systems in plants. J Exp Bot. 53:855–864. doi: 10.1093/jexbot/53.370.855
  • Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell. 138:1184–1194. doi: 10.1016/j.cell.2009.07.004
  • Houk R, Fassel V, Flesh G, Svec H, Gray A, Taylor C. 1980. Inductively copled argon plasma as an ion source for mass spectrometric determination of trace elements. Annal Chem. 52:2283–2289. doi: 10.1021/ac50064a012
  • Huang NC, Liu KH, Lo HJ, Tsay YF. 1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell. 11:1381–1392. doi: 10.1105/tpc.11.8.1381
  • Jang JH, Kim S-H, Khaine I, Kwak MJ, Lee HK, Lee TY, Lee WY, Woo SY. 2018. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica. 56:1188–1203. doi: 10.1007/s11099-018-0801-0
  • Jetiyanon K, Fowler WD, Kloepper JW. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 87:1390–1394. doi: 10.1094/PDIS.2003.87.11.1390
  • Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass ADM. 2002. Functional analysis of an Arabidopsis T-DNA “knockout” of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol. 130:1263–1275. doi: 10.1104/pp.102.010843
  • Khademi S, O’Connell J, Remis J, Robles-Colmenares Y, Miericke LJW, Stroud RM. 2004. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.3.5 angstrom. Science. 305:1587–1594. doi: 10.1126/science.1101952
  • Khalid A, Arshad M, Zahir ZA. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol. 96:473–480. doi: 10.1046/j.1365-2672.2003.02161.x
  • Kirankumar R, Jagadeesh KS, Krishnara PU, Patil MS. 2008. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of Tobacco Mosaic Virus pathogen. Karnataka J Agr Sci. 21:309–311.
  • Kokalis-Burelle N, Vavrina CS, Reddy VS, Kloepper JW. 2003. Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: effects on seedling quality, disease, and nematode resistance. Horttechnology. 13:476–482. doi: 10.21273/HORTTECH.13.3.0476
  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF. 2010a. Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol. 13:266–273. doi: 10.1016/j.pbi.2009.12.003
  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, et al. 2010b. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell. 18:927–937. doi: 10.1016/j.devcel.2010.05.008
  • Lakshmanan V, Castaneda R, Rudrappa T, Bais HP. 2013. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta. 238:657–668. doi: 10.1007/s00425-013-1920-2
  • Lin X, Kaul S, Rounsley S, Shea TP, Benito M-I, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 402:761–768. doi: 10.1038/45471
  • Lin W, Okon Y, Hardy RWF. 1983. Enhanced mineral uptake by Zea Mays and Sorghum Bicolor roots inoculated with azospirillum-brasilense. Appl Environ Microb. 45:1775–1779.
  • Lin Y, Watts DB, Kloepper JW, Torbert HA. 2018. Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Commun Soil Sci Plant Anal. 49:1239–1255. doi: 10.1080/00103624.2018.1457155
  • Liu K, McInroy JA, Hu C-H, Kloepper JW. 2017. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis. 102:67–72. doi: 10.1094/PDIS-04-17-0478-RE
  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E. 2007. Bacillus megaterium rhizobacteria promote growth and Alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact. 20:207–217. doi: 10.1094/MPMI-20-2-0207
  • Ludewlg U, Neuhduser B, Dynowski M. 2007. Molecular mechanisms of ammonium transport and accumulation in plants. Febs Lett. 581:2301–2308. doi: 10.1016/j.febslet.2007.03.034
  • Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B. 2006. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta. 223:591–603. doi: 10.1007/s00425-005-0106-y
  • Mayer M, Dynowski M, Ludewig U. 2006. Ammonium ion transport by the AMT/Rh homologue LeAMT1; 1. Biochemical J. 396:431–437. doi: 10.1042/BJ20060051
  • Mort-Gaudry JF. 2001. Nitrogen assimilation by plants. New Hampshire: Science Publishers.
  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. 2002. Nitrate transport in plants: which gene and which control? J Exp Bot. 53:825–833. doi: 10.1093/jexbot/53.370.825
  • Poupin MJ, Timmermann T, Vega A, Zuniga A, Gonzalez B. 2013. Effects of the plant growth-promoting bacterium burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. Plos One. 8. doi: 10.1371/journal.pone.0069435
  • Ryu CM, Hu CH, Locy RD, Kloepper JW. 2005b. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil. 268:285–292. doi: 10.1007/s11104-004-0301-9
  • Ryu C-M, Hu C-H, Locy RD, Kloepper JW. 2005a. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil. 268:285–292. doi: 10.1007/s11104-004-0301-9
  • Saia S, Rappa V, Ruisi P, Abenavoli MR, Sunseri F, Giambalvo D, Martinelli F. 2015. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front Plant Sci. 6:815. doi: 10.3389/fpls.2015.00815
  • Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blöcker H, Perez-Alonso M, Obermaier B, et al. 2000. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature. 408:820–823. doi: 10.1038/35048706
  • SAS Institute Inc. 2010. Base SAS® 9.3 procedures guide. Cary, NC: SAS Institute Inc.
  • Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Kotani H, Tabata S. 2000. Structural analysis of Arabidopsis thaliana chromosome 5. X. sequence features of the regions of 3,076,755 bp covered by sixty P1 and TAC clones. DNA Res. 7:31–63. doi: 10.1093/dnares/7.1.31
  • Sohlenkamp C, Shelden M, Howitt S, Udvardi M. 2000. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 467:273–278. doi: 10.1016/S0014-5793(00)01153-4
  • Touraine B, Daniel-Vedele F, Forde B. 2001. Nitrate uptake and its regulation. In: Lea P, Morot-Gaudry J-F, editors. Plant nutrition. Berlin: Springer-Verlag; p. 1–36.
  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Micro. 42:117–126. doi: 10.1134/S0003683806020013
  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 4:356. doi: 10.3389/fpls.2013.00356
  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithoefer A. 2012. CML42-mediated calcium signaling coordinates responses to spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 159:1159–1175. doi: 10.1104/pp.112.198150
  • Wang YY, Hsu PK, Tsay YF. 2012. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 17:458–467. doi: 10.1016/j.tplants.2012.04.006
  • Yuan L, Loque D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N. 2007a. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell. 19:2636–2652. doi: 10.1105/tpc.107.052134
  • Yuan LX, Loque D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N. 2007b. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell. 19:2636–2652. doi: 10.1105/tpc.107.052134
  • Zhang HM, Jennings A, Barlow PW, Forde BG. 1999. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA. 96:6529–6534. doi: 10.1073/pnas.96.11.6529
  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, et al. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta. 226:839–851. doi: 10.1007/s00425-007-0530-2