1,755
Views
5
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Transcriptome profiling and phytohormone responses of Arabidopsis roots to different ambient temperatures

, , , , , , , , & ORCID Icon show all
Pages 314-323 | Received 20 Dec 2018, Accepted 17 Jun 2019, Published online: 30 Jun 2019

References

  • Annan JD, Hargreaves JC. 2013. A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim Past. 9(1):367–376. doi: 10.5194/cp-9-367-2013
  • Atsushi H. 2013. High temperature injury and auxin biosynthesis in microsporogenesis. Front Plant Sci. 4:47.
  • Augstein F, Carlsbecker A. 2018. Getting to the roots: a developmental genetic view of root anatomy and function from Arabidopsis to lycophytes. Front Plant Sci. 9:1410. doi:10.3389/fpls.2018.01410.
  • Bakermans C, Nealson KH. 2004. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol. 186:2340–2345. doi:10.1128/jb.186.8.2340-2345.2004.
  • Binder S. 2010. Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book. 8:e0137. doi: 10.1199/tab.0137
  • Byun MY, Cui LH, Oh TK, Jung YJ, Lee A, Park KY, Kang BG, Kim WT. 2017. Homologous U-box E3 ubiquitin ligases OsPUB2 and OsPUB3 are involved in the positive regulation of low temperature stress response in rice (Oryza sativa L.). Front Plant Sci. 8:16. doi: 10.3389/fpls.2017.00016
  • Callis J, Vierstra RD. 2000. Protein degradation in signaling. Curr Opin Plant Biol. 3:381–386. doi: 10.1016/S1369-5266(00)00100-X
  • Campitelli BE, Simonsen AK. 2012. Plant evolutionary ecology: molecular genetics, global warming and invasions, and the novel approaches we are using to study adaptations. New Phytol. 196:975–977. doi: 10.1111/nph.12028
  • Cho SK, Chung HS, Ryu MY, Park MJ, Lee MM, Bahk Y-Y, Kim J, Pai HS, Kim WT. 2006. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol. 142:1664–1682. doi:10.1104/pp.106.087965.
  • Colebrook EH, Thomas SG, Phillips AL, Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 217:67–75. doi:10.1242/jeb.089938.
  • Däschner K, Couée I, Binder S. 2001. The mitochondrial isovaleryl-coenzyme a dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 126:601–612. doi:10.1104/pp.126.2.601.
  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L. 2010. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol. 3:371–390. doi: 10.1046/j.1364-3703.2002.00131.x
  • Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7:1085. doi: 10.2307/3870059
  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M, Smith JQ, Millar AJ. 2006. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell. 18:639–650. doi: 10.1105/tpc.105.038315
  • Fang C, Li F, Pei J, Ren J, Gong Y, Yuan Z, Ke W, Zheng Y, Bai X, Ye JS. 2017. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agric For Meteorol. 248:449–457. doi: 10.1016/j.agrformet.2017.10.032
  • Fei Q, Li J, Luo Y, Ma K, Niu B, Mu C, Gao H, Li X. 2018. Plant molecular responses to the elevated ambient temperatures expected under global climate change. Plant Signal Behav. 13:e1414123. doi:10.1080/15592324.2017.1414123.
  • Fei Q, Wei S, Zhou Z, Gao H, Li X. 2017. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis. Plant Cell Rep. 36:1507–1518. doi:10.1007/s00299-017-2171-7.
  • Fei Q, Zhang J, Zhang Z, Wang Y, Liang L, Wu L, Gao H, Sun Y, Niu B, Li X. 2019. Effects of auxin and ethylene on root growth adaptation to different ambient temperatures in Arabidopsis. Plant Sci. 281:159–172. doi:10.1016/j.plantsci.2019.01.018.
  • Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S. 2015. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics. 16:1–14. doi: 10.1186/s12864-015-1611-4
  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ. 2006. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell. 18:1177–1187. doi: 10.1105/tpc.105.039990
  • Gyula P, Baksa I, Tóth T, Mohorianu I, Dalmay T, Szittya G. 2018. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2. Plant Cell Environ. 41:2404–2417. doi:10.1111/pce.13355.
  • Hedhly A, Hormaza JI, Herrero M. 2009. Global warming and sexual plant reproduction. Trends Plant Sci. 14:30–36. doi: 10.1016/j.tplants.2008.11.001
  • Holland P, Knævelsrud H, Søreng K, Mathai BJ, Lystad AH, Pankiv S, Bjørndal GT, Schultz SW, Lobert VH, Chan RB, et al. 2016. HS1BP3 negatively regulates autophagy by modulation of phosphatidic acid levels. Nat Commun. 7:13889. doi:10.1038/ncomms13889.
  • Huang Z, Footitt S, Tang A, Finch-Savage WE. 2017. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behavior in Arabidopsis. Plant Cell Environ. 41:187–197. doi:10.1111/pce.13082.
  • Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K, Gogol-Döring A, Quint M, Delker C. 2017. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol. 17:114. doi: 10.1186/s12870-017-1068-5
  • Kim YS, An C, Park S, Gilmour SJ, Wang L, Renna L, Brandizzi F, Grumet R, Thomashow M. 2017b. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. Plant Cell. 29. doi:10.1105/tpc.16.00865.
  • Kim S, Hwang G, Lee S, Zhu JY, Paik I, Nguyen TT, Kim J, Oh E. 2017a. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Front Plant Sci. 8:1787. doi: 10.3389/fpls.2017.01787
  • Klipper-Aurbach Y, Wasserman M, Braunspiegel-Weintrob N, Borstein D, Peleg S, Assa S, Karp M, Benjamini Y, Hochberg Y, Laron Z. 1995. Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses. 45:486–490. doi:10.1016/0306-9877(95)90228-7.
  • Körner C, Basler D. 2010. Phenology under global warming. Science. 327:1461–1462. doi: 10.1126/science.1186473
  • Liu L, Cang J, Yu J, Wang X, Huang R, Wang J, Lu B. 2013. Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. J Agric Chem Soc Japan. 77:516–525.
  • Liu J, Feng L, Li J, He Z. 2015. Genetic and epigenetic control of plant heat responses. Front Plant Sci. 6:267.
  • Liu Y, Mu J, Niklas KJ, Li G, Sun S. 2012. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytol. 195:427–436. doi: 10.1111/j.1469-8137.2012.04178.x
  • Ludwig-Müller J, Krishna P, Forreiter C. 2000. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol. 123:949–958. doi: 10.1104/pp.123.3.949
  • Mandadi KK, Misra A, Ren S, McKnight TD. 2009. BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol. 150:1930–1939. doi:10.1104/pp.109.139220.
  • Martins S, Montieljorda A, Cayrel A, Huguet S, Roux PL, Ljung K, Vert G. 2017. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun. 8:309. doi: 10.1038/s41467-017-00355-4
  • Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Wees SCMV. 2017. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol. 213:1363–1377. doi: 10.1111/nph.14251
  • Massondelmotte V, Schulz M. 2013. Chapter 5: Information from Paleoclimate Archives.
  • Mcmahon HT, Gallop JL. 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 438:590–596. doi: 10.1038/nature04396
  • Min HJ, Ye JJ, Kang BG, Kim WT. 2016. CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice (Oryza sativa L.). Mol Cells. 39:250–257. doi: 10.14348/molcells.2016.2290
  • Monteiro D, Liu Q, Lisboa S, Scherer GE, Quader H, Malhó R. 2005. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot. 56:1665–1674. doi: 10.1093/jxb/eri163
  • Murayama Y, Kori H, Oshima C, Kondo T, Iwasaki H, Ito H. 2017. Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc Natl Acad Sci USA. 114:5641–5646. doi: 10.1073/pnas.1620378114
  • Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. 2013. Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7:1211–1226. doi:10.1038/ismej.2013.8.
  • Nagelmüller S, Hiltbrunner E, Körner C. 2017. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants. 9:plx054. doi:10.1093/aobpla/plx054.
  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell. 101:331–340. doi: 10.1016/S0092-8674(00)80842-9
  • Nolan C, Overpeck JT, Allen JRM, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, et al. 2018. Past and future global transformation of terrestrial ecosystems under climate change. Science. 361:920–923. doi:10.1126/science.aan5360.
  • Oh MM, Trick HN, Rajashekar CB. 2009. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol. 166:180–191. doi: 10.1016/j.jplph.2008.04.015
  • Osterlund MT, Hardtke CS, Wei N, Deng XW. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 405:462–466. doi: 10.1038/35013076
  • Pieterse CM, Leonreyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 5:308–316. doi: 10.1038/nchembio.164
  • Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB. 2007. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature. 448:370–374. doi: 10.1038/nature05966
  • Sáenzmata J, Jiménezbremont JF. 2012. HR4 gene is induced in the Arabidopsis-Trichoderma atroviride beneficial interaction. Int J Mol Sci. 13:9110–9128. doi: 10.3390/ijms13079110
  • Schertl P, Danne L, Braun HP. 2017. 3-Hydroxyisobutyrate dehydrogenase is involved in valine and isoleucine degradation in A. thaliana. Plant Physiol. 175, 51–61. doi: 10.1104/pp.17.00649
  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V. 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Comput Geom. 2007:1–21.
  • Stone S, Williams L, Farmer L, Vierstra R, Callis J. 2006. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell. 18:3415–3428. doi: 10.1105/tpc.106.046532
  • Sun J, Zhang J, Larue CT, Huber SC. 2015. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Environ. 34:592–604. doi: 10.1111/j.1365-3040.2010.02265.x
  • Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T. 2009. A simple and high-sensitivity method for analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis. BMC Plant Biol. 9:39. doi: 10.1186/1471-2229-9-39
  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 8:161.
  • Walker JM. 1969. One-degree increments in soil temperatures affect maize seedling behavior. Soil Scisocamerproc. 33:729–736. doi: 10.2136/sssaj1969.03615995003300050031x
  • Wigge PA. 2013. Ambient temperature signalling in plants. Curr Opin Plant Biol. 16:661–666. doi:10.1016/j.pbi.2013.08.004.
  • Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H. 2003. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol. 132:861–869. doi:10.1104/pp.103.020800.
  • Zhang X, Chen Y, Wang ZY, Chen Z, Gu H, Qu LJ. 2010. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant J. 51:512–525. doi: 10.1111/j.1365-313X.2007.03156.x
  • Zhu J, Geisler M. 2015. Keeping it all together: auxin–actin crosstalk in plant development. J Exp Bot. 66:4983–4998. doi: 10.1093/jxb/erv308
  • Zhu J, Zhang KX, Wang WS, Gong W, Liu WC, Chen HG, Xu HH, Lu YT. 2015. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol. 56:727–736. doi: 10.1093/pcp/pcu217