2,603
Views
26
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings

, , , , &
Pages 482-491 | Received 31 May 2019, Accepted 21 Aug 2019, Published online: 09 Sep 2019

References

  • Al-Garni SMS. 2006. Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am-Eurasian J Agric Environ Sci. 1(2):119–126.
  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif MS, Al-Wabel M, Shahzad AN. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res Int. 24(14):12700–12712.
  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol. 170(1):47–55.
  • Bao SD. 2005. Soil analysis. Beijing: China agriculture press.
  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. 169(4):895–904.
  • Borde M, Dudhane M, Kulkarni M. 2017. Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. Mycorrhiza-Eco-Physiology, Secondary Metabolites. Nanomaterials. 71–86.
  • Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L. 2012. The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatularoots. Mycorrhiza. 22(4):259–269.
  • Campos-Soriano L, Segundo BS. 2011. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav. 6(4):553–557.
  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 9:457.
  • Chen J, Zhang H, Zhang X, Tang M. 2017. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci. 8:1739.
  • Cheng DD, Zhang ZS, Sun XB, Zhao M, Sun GY. 2016. Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced bypseudomonassyringaepv.tabaciunder light and dark conditions. BMC Plant Biol. 16(1):1–11.
  • Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH. 2016. Prompt chlorophyll a, fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. J Photochem Photobiol B. 157(7):22–31.
  • Evelin H, Giri B, Kapoor R. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza. 22(3):203–217.
  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 104(7):1263–1280.
  • Fan XX, Song FQ. 2018. Responses of nonenzymatic antioxidants to atrazine in arbuscular mycorrhizal roots of Medicago sativa L. Mycorrhiza. 28(3):1–5.
  • Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol. 33(1):317–345.
  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12(4):185–190.
  • Galvan-Ampudia CS, Testerink C. 2011. Salt stress signals shape the plant root. Curr Opin Plant Biol. 14(3):296–302.
  • Garg N, Bhandari P. 2016a. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma. 253(5):1325–1345.
  • Garg N, Bhandari P. 2016b. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. 78(3):371–387.
  • Giri B, Kapoor R, Mukerji KG. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils. 38(3):170–175.
  • Giri B, Kapoor R, Mukerji KG. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol. 54(4):753–760.
  • Giri B, Mukerji KG. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandifloraunder field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14(5):307–312.
  • Gong B, Wen D, Vandenlangenberg K, Wei M, Yang FJ, Shi QH, Wang XF. 2013. Comparative effects of NaCl and NaHCO3, stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hortic. 157(3):1–12.
  • Gutjahr C, Paszkowski U. 2009. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact. 22(7):763–772.
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331(1–2):313–327.
  • Hashem A, Abd-Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D. 2015. Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact. 10(1):230–242.
  • Hause B, Maier W, Miersch O, Kramell R, Strack D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130(3):1213–1220.
  • He H, Peng Q, Wang X, Fan C, Pang J, Lambers H, Zhang X. 2017. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant Soil. 416(1–2):565–584.
  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M. 2009. Plant root growth, architecture and function. Plant Soil. 321(1–2):153–187.
  • Huang Z, Liu Y, Cui Z, Fang Y, He HH, Liu BR, Wu GL. 2018. Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crops Res. 221(15):1–6.
  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y. 2005. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 168(3):687–696.
  • Kalaji HM, Schansker G, Ladle RJ, Video G, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dabrowski P, et al. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res. 122(2):121–158.
  • Karagiannidis N, Bletsos F, Stavropoulos N. 2002. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic. 94(1–2):145–156.
  • Li JQ, Meng B, Chai H, Yang XC, Song WZ, Li SX, Lu A, Tao Zhang T, Sun W. 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci. 9:499.
  • Li J, Sun Y, Jiang X, Chen B, Zhang X. 2018. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicol Environ Saf. 157:235–243.
  • Lin J, Wang Y, Sun S, Mu C, Yan X. 2017. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ. 576:234–241.
  • Liu Z, Li YJ, Wang J, He XY, Tian CJ. 2015. Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host. J Agric Sci. 153(04):602–614.
  • Liu M, Sun J, Li Y, Xiao Y. 2017. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere. 167:204–211.
  • Liu XJ, Zhang HH, Wang JR, Wu XY, Ma SL, Xu ZS, Zhou T, Xu N, Tang XD, Baiyi A. 2019. Improvement of drought resistance by increasing water use efficiency and PSII function of mulberry seedling leaves under drought stress with increased CO2 concentrations. J Plant Interact. 14(1):219–228.
  • Medina A, Roldán A, Azcón R. 2010. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag. 91(12):2547–2553.
  • Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12(4):563–569.
  • Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 57(5):1025–1043.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59(1):651–681.
  • Polcyn W, Paluch-Lubawa E, Lehmann T, Mikuła R. 2019. Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drought effects but does not improve fodder yield and quality. Front Plant Sci. 10:496.
  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza. 26(7):673–684.
  • Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustainable Dev. 32(1):181–200.
  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol. 185:75–83.
  • Ren CG, Kong CC, Xie ZH. 2018. Role of abscisic acid in strigolactoneinduced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 18:74.
  • Ruicai L, Mingna L, Tiejun Z, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q. 2016. Comparative proteomic analysis reveals differential root Proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci. 7:424.
  • Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB. 2007. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem. 45(1):39–46.
  • Shamshiri MH, Fattahi M. 2016. Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test. Russ J Plant Physiol. 63(1):101–110.
  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, et al. 2002. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154(2):501–507.
  • Sheng M, Tang M, Zhang F, Huang Y. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza. 21(5):423–430.
  • Sui X, Wu Q, Chang W, Fan XX, Song FQ. 2018. Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress. BMC Plant Biol. 18:289.
  • Takahashi M, Shigeto J, Sakamoto A, Morikawa H. 2017. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav. 12(10):e1376157.
  • Talaat NB, Shawky BT. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot. 98(1):20–31.
  • Toussaint JP, St-Arnaud M, Charest C. 2004. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol. 50(4):251–260.
  • Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ. 2000. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol. 15(2):169–182.
  • Uygur V, Yeti˙Si˙R H. 2009. Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. J Plant Nutr. 32(4):629–643.
  • Wei C, Xin S, Fan XX, Song FQ. 2018. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol. 9:652.
  • Wu QS, Zou YN, He XH. 2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant. 32(2):297–304.
  • Xu N, Zhang HH, Zhong HX, Wu YN, Li JB, Li X, Yin ZP, Zhu WX, Qu Y, Sun GY. 2018. The response of photosynthetic functions of F1 cutting seedlings from Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius “Diabolo” (♂) and the parental leaves to salt stress. Front Plant Sci. 9:714.
  • Yadav S, Irfan M, Ahmad A, Hayat S. 2011. Causes of salinity and plant manifestations to salt stress: A review. J Environ Biol. 32(5):667–685.
  • Yan SH, Ji J, Wang G. 2006. Effects of salt stress on plants and the mechanism of salt tolerance. World Sci Technol Res Dev. 28(4):70–76.
  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. Plos One. 10(12):e0145726.
  • Zhang HH, Feng P, Yang W, Sui X, Li X, Zhang RT, Gu SY, Xu N. 2018. Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. J For Res. 29(4):1049–1059.
  • Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW. 2010. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta. 234(5):883–889.
  • Zhang HH, Li X, Xu N, Sun ML, Cai DJ, Sun GY, Gu SY. 2017. Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa (Medicago sativa L.) cultivars. Legume Research. 40(5):853–858.
  • Zhang HH, Li X, Zhang SB, Yin ZP, Zhu WX, Li JB, Meng L, Zhong HX, Wu YN, Xu N, Sun GY. 2018. Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. Front Plant Sci. 9:1806.
  • Zhang HH, Xu N, Li X, Jin WW, Tian Q, Sun GY, Gu SY. 2017. Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco. Int J Agric Biol. 19(4):735–745.
  • Zhang HH, Xu N, Li X, Long JH, Sui X, Wu YN, Li JB, Wang JF, Qu Y, Sun GY. 2018. Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. under cadmium contaminated soil. Front Plant Sci. 9:1156.
  • Zhang HH, Xu N, Sui X, Zhong HX, Yin ZP, Li X, Sun GY. 2018. Photosynthesis response to drought stress in leaves of two alfalfa (Medicago sativa L.) varieties. International Journal of Agriculture and Biology. 20(5):1012–1020.
  • Zhang HH, Xu N, Wu XY, Wang JR, Ma SL, Li X, Sun GY. 2018. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interaction. 13(1):506–513.
  • Zhu JK. 2001. Plant salt tolerance. Trends Plant Sci. 6(2):66–71.
  • Zhu X, Song F, Xu H. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation andantioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza. 20:325–332.
  • Zhu XQ, Tang M, Zhang HQ. 2016. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica. 55(2):1–8.
  • Zhu XQ, Wang CY, Chen H, Tang M. 2014. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica. 52(2):247–252.