2,684
Views
11
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Morphological variability and genetic diversity of wheat genotypes grown on saline soil and identification of new promising molecular markers associated with salinity tolerance

ORCID Icon, , & ORCID Icon
Pages 564-571 | Received 03 Feb 2019, Accepted 31 Aug 2019, Published online: 05 Oct 2019

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7(1):18.
  • Afiah SA. 2002. Comparative study on combining ability, degrees of dominance and heterotic effects in bread wheat under saline stress and rainfed conditions. Paper presented at the proceedings of the 2nd conference on Sustainable Agricultural Development; May 8–10; Egypt: Faculty of Agriculture, Fayoum Branch, Cairo University.
  • Afiah SA, Hassan WA, Ahmed FS, Farag HIA. 2018. Response of some genetically distinct bread wheat genotypes to drought stress. Egypt J Plant Breed. In press.
  • Al-Doss AA, Elshafei AA, Moustafa KA, Saleh M, Barakat MN. 2011. Comparative analysis of diversity based on morphoagronomic traits and molecular markers in durum wheat under heat stress. Afr J Biotechnol. 10(19):3671–3681.
  • Al-Murish TM, Elshafei AA, Al-Doss AA, Barakat MN. 2013. Genetic diversity of coffee (Coffea arabica L.) in Yemen via SRAP, TRAP and SSR markers. J Food Agric Environ. 11(2):411–416.
  • Ashraf M, Foolad MR. 2013. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed. 132(1):10–20.
  • Bortolini L, Maucieri C, Borin M. 2018. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy. 8(2):23.
  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA. 110(20):8057–8062.
  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron. 22(3):243–253.
  • El Siddig MA, Baenziger S, Dweikat I, El Hussein AA. 2013. Preliminary screening for water stress tolerance and genetic diversity in wheat (Triticum aestivum L.) cultivars from Sudan. J Genet Eng Biotechnol. 11(2):87–94. doi: 10.1016/j.jgeb.2013.08.004
  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. 2002. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet. 104(2–3):399–407.
  • Federer WT, King F. 2007. Variations on split plot and split block experiment designs. Vol. 654. Hoboken (NJ): John Wiley & Sons.
  • Gadaleta A, Giancaspro A, Zacheo S, Nigro D, Giove SL, Colasuonno P, Blanco A. 2011. Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet Res. 9(2):243–246.
  • Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. New York (NY): John Wiley & Sons; p. 680.
  • Gong Y, Xu S, Mao W, Li Z, Hu Q, Zhang G, Ding J. 2011. Genetic diversity analysis of faba bean (Vicia faba L.) based on EST-SSR markers. Agric Sci China. 10(6):838–844.
  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ. 2011. Current trends in microsatellite genotyping. Mol Ecol Resour. 11(4):591–611.
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 4(1):1–9.
  • Hassanein AMA, Al-Soqeer AA. 2018. Morphological and genetic diversity of Moringa oleifera and Moringa peregrina genotypes. Hortic Environ Biotechnol. 59(2):251–261.
  • Ishikawa G, Saito M, Tanaka T, Katayose Y, Kanamori H, Kurita K, Nakamura T. 2018. An efficient approach for the development of genome-specific markers in allohexaploid wheat (Triticum aestivum L.) and its application in the construction of high-density linkage maps of the D genome. DNA Res. 25(3):317–326.
  • Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol. 68:405–434.
  • Klute A, Weaver RW, Mickelson SH, Sparks DL, Bartels JM, Dane JH, Topp GC, Ulery AL, Drees LR, editors. 1994. Methods of soil analysis. 3rd ed. Madison (WI): Soil Science Society of America.
  • Kordrostami M, Rabiei B, Hassani Kumleh HH. 2016. Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Syst Evol. 302(7):871–890.
  • Kumar S, Kumar V, Kumari P, Singh AK, Singh R. 2016. DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. J Environ Biol. 37(2):319.
  • Li M, Zhu L, Zhou CY, Lin L, Fan YJ, Zhuang ZM. 2012. Development and characterization of EST-SSR markers from Scapharca broughtonii and their transferability in Scapharca subcrenata and Tegillarca granosa. Molecules. 17(9):10716–10723.
  • Manly KF, Cudmore RH Jr, Meer JM. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 12(12):930–932.
  • Mardi M, Naghavi M, Pirseyedi S, Kazemi Alamooti M, Rashidi Monfared S, Ahkami A, Omidbakhsh M, Alavi N, Salehi Shanjani P, Katsiotis A. 2011. Comparative assessment of SSAP, AFLP and SSR markers for evaluation of genetic diversity of durum wheat (Triticum turgidum L. var. durum). J Agric Sci Technol. 13:905–920.
  • Meyer L, Causse R, Pernin F, Scalone R, Bailly G, Chauvel B, Délye C, Le Corre V. 2017. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLos One. 12(5):e0176197.
  • Moghaieb RE, Abdel-Hadi AA, Talaat NB. 2011. Molecular markers associated with salt tolerance in Egyptian wheats. Afr J Biotechnol. 10(79):18092–18103.
  • Nandha PS, Singh J. 2014. Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers. Plant Breed. 133(1):28–35.
  • Negrão S, Schmöckel SM, Tester M. 2017. Evaluating physiological responses of plants to salinity stress. Ann Bot. 119(1):1–11.
  • Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 76(10):5269–5273.
  • Ouda S, Gaballah M, Tantawy M, El-Mesiry T. 2006. Irrigation optimization for sunflower grown under saline conditions. Res J Agric Biol Sci. 2(6):323–327.
  • Ouda SAH, Zohry AE. 2017. Crops intensification to reduce wheat gap in Egypt. In: Ouda S, Zohry AE-H, Alkitkat H, Mostafa M, Sayad T, Kamel A, editors. Future food gaps Egypt. Cham: Springer; p. 37–56.
  • Peng JH, Lapitan NL. 2005. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics. 5(2):80–96.
  • Plaschke J, Ganal MW, Röder MS. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet. 91–91(6–7):1001–1007.
  • Postolache D, Leonarduzzi C, Piotti A, Spanu I, Roig A, Fady B, Roschanski A, Liepelt S, Vendramin GG. 2014. Transcriptome versus genomic microsatellite markers: highly informative multiplexes for genotyping Abies alba Mill. and congeneric species. Plant Mol Biol Report. 32(3):750–760.
  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet. 100(3–4):584–592.
  • Rahneshan Z, Nasibi F, Moghadam AA. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact. 13(1):73–82.
  • Ren J, Su ZZ, Dang ZH, Ding Y, Wang PX, Niu JM. 2017. Development and characterization of EST-SSR markers in Stipa breviflora (Poaceae). Appl Plant Sci. 5(4):1600157.
  • Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res. 11(1):679–692.
  • Shpiler L, Blum A. 1990. Heat tolerance for yield and its components in different wheat cultivars. Euphytica. 51(3):257–263.
  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet. 95(1-2):163–173.
  • Somers DJ, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 109(6):1105–1114.
  • Steel R, Torrie JH. 1980. Principles and procedures of statistics: a biometrical approach. New York (NY): McGraw-Hill.
  • Swofford DL. 2001. PAUP*: phylogenetic analysis using parsimony (*and other methods) 4.0.b5. Sunderland (MA): Sinauer Associates.
  • Wang X, Ma J, Liu H, Liu R, Li H. 2018. Development and characterization of EST-derived SSR markers in the cereal cyst nematode Heterodera avenae. Eur J Plant Pathol. 150(1):105–113.
  • Xinquan Y, Peng L, Zongfu H, Zhongfu N, Qixin S. 2005. Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum. Prog Natural Sci. 15(1):24–33.