2,042
Views
11
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Hematite nanoparticles influence ultrastructure, antioxidant defenses, gene expression, and alleviate cadmium toxicity in Zea mays

, , , , &
Pages 54-74 | Received 28 Nov 2019, Accepted 28 Feb 2020, Published online: 28 Mar 2020

References

  • Ahmad P, Nabi G, Ashraf M. 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot. 77:36–44. doi: 10.1016/j.sajb.2010.05.003
  • Ahmmad B, Leonard K, Shariful Islam M, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y. 2013. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol. 24:160–167. doi: 10.1016/j.apt.2012.04.005
  • Alidoust D, Isoda A. 2014. Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ Earth Sci. 71:5173–5182. doi: 10.1007/s12665-013-2920-z
  • Andresen E, Küpper H. 2013. Cadmium toxicity in plants. In: Sigel A., Sigel H., Sigel R. K. O, editor. Cadmium: from toxicity to essentiality. Dordrecht: Springer; p. 395–413.
  • Arora A, Sairam RK, Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Curr Sci. 82:1227–1238.
  • Ashokkumar T, Prabhu D, Geetha R, Govindaraju K, Manikandan R, Arulvasu C, Singaravelu G. 2014. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloids Surf B: Biointerfaces. 123:549–556. doi: 10.1016/j.colsurfb.2014.09.051
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161:559–566. doi: 10.1016/0003-2697(87)90489-1
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2:17–71. doi: 10.1116/1.2815690
  • Chichiriccò G, Poma A. 2015. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials. 5:851–873. doi: 10.3390/nano5020851
  • Choudhury S, Panda P, Sahoo L, Panda SK. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behavior. 8:1–6.
  • Daud MK, Quiling H, Lei M, Ali B, Zhu SJ. 2015. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere. 120:309–320. doi: 10.1016/j.chemosphere.2014.07.060
  • Dietz K-J, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci. 16:582–589. doi: 10.1016/j.tplants.2011.08.003
  • Esmaeili E, Salavati-Niasari M, Mohandes F, Davar F, Seyghalkar H. 2011. Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis. Chem Eng J. 170:278–285. doi: 10.1016/j.cej.2011.03.010
  • Fleischer A, O’neill MA, Ehwald R. 1999. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 121:829–838. doi: 10.1104/pp.121.3.829
  • Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 17:1866–1875. doi: 10.1105/tpc.105.033589
  • Fridovich I. 1986. Superoxide dismutases. In: Meister A, editor. Advances in enzymology and related areas of molecular biology. New York: John Wiley & Sons; p. 61–97.
  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A. 2016. Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Res/Genetic Toxicol Environ Mutagenesis. 807:25–32. doi: 10.1016/j.mrgentox.2016.07.006
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48:909–930. doi: 10.1016/j.plaphy.2010.08.016
  • Gladish DK, Xu J, Niki T. 2006. Apoptosis-like programmed cell death occurs in procambium and ground meristem of pea (Pisum sativum) root tips exposed to sudden flooding. Ann Bot. 97:895–902. doi: 10.1093/aob/mcl040
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W. 2017. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol. 51:11308–11316. doi: 10.1021/acs.est.7b03164
  • Gossett DR, Millhollon EP, Lucas M. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34:706–714. doi: 10.2135/cropsci1994.0011183X003400030020x
  • Gupta SD, Agarwal A, Pradhan S. 2018. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf. 161:624–633. doi: 10.1016/j.ecoenv.2018.06.023
  • Hara-Nishimura I, Hatsugai N. 2011. The role of vacuole in plant cell death. Cell Death Differ. 18:1298–1304. doi: 10.1038/cdd.2011.70
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Hu J, Guo H, Li J, Wang Y, Xiao L, Xing B. 2017. Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines. J Nanobiotechnol. 15:1–12. doi: 10.1186/s12951-017-0286-1
  • Jiang XJ, Luo YM, Liu Q, Liu SL, Zhao QG. 2004. Effects of cadmium on nutrient uptake and translocation by Indian Mustard. Environ Geochem Health. 26:319–324. doi: 10.1023/B:EGAH.0000039596.15586.b3
  • Kailasam K, Epping JD, Thomas A, Losse S, Junge H. 2011. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ Sci. 4:4668–4674. doi: 10.1039/c1ee02165f
  • Kang YS, Risbud S, Rabolt JF, Stroeve P. 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater. 8:2209–2211. doi: 10.1021/cm960157j
  • Kean EG, Hamaker BR, Ferruzzi MG. 2008. Carotenoid bioaccessibility from whole grain and degermed maize meal products. J Agric Food Chem. 56:9918–9926. doi: 10.1021/jf8018613
  • Khan MN, Mobin M, Abbas ZK, Almutairi KA, Siddiqui ZH. 2017. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. 110:194–209. doi: 10.1016/j.plaphy.2016.05.038
  • Kimbrough DE, Wakakuwa JR. 1989. Acid digestion for sediments, sludges, soils, and solid wastes: a proposed alternative to EPA SW 846 method 3050. Environ Sci Technol. 23:898–900. doi: 10.1021/es00065a021
  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 9:790. doi: 10.3390/su9050790
  • Li S, Chen J, Islam E, Wang Y, Wu J, Ye Z, Yan W, Peng D, Liu D. 2016b. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere. 153:107–114. doi: 10.1016/j.chemosphere.2016.02.062
  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B. 2016a. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 159:326–334. doi: 10.1016/j.chemosphere.2016.05.083
  • Li J, Hu J, Xiao L, Gan Q, Wang Y. 2017. Physiological effects and fluorescence labeling of magnetic iron oxide nanoparticles on citrus (Citrus reticulata) seedlings. Water, Air, Soil Pollut. 228:1–9. doi: 10.1007/s11270-016-3178-3
  • Li J, Hu J, Xiao L, Wang Y, Wang X. 2018. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and citrus maxima seedlings. Sci Total Environ. 625:677–685. doi: 10.1016/j.scitotenv.2017.12.276
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. doi: 10.1006/meth.2001.1262
  • Maity D, Agrawal D. 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater. 308:46–55. doi: 10.1016/j.jmmm.2006.05.001
  • Martínez-Fernández D, Barroso D, Komárek M. 2016. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res. 23:1732–1741. doi: 10.1007/s11356-015-5423-5
  • Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, et al. 2013. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ Pollut. 174:150–156. doi: 10.1016/j.envpol.2012.11.020
  • Michálková Z, Komárek M, Šillerová H, Della Puppa L, Joussein E, Bordas F, Vaněk A, Vaněk O, Ettler V. 2014. Evaluating the potential of three Fe-and Mn-(nano) oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J Environ Manag. 146:226–234. doi: 10.1016/j.jenvman.2014.08.004
  • Miyagawa Y, Tamoi M, Shigeoka S. 2000. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol. 41:311–320. doi: 10.1093/pcp/41.3.311
  • Nair PMG, Chung IM. 2015. Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul. 34:350–361. doi: 10.1007/s00344-014-9468-3
  • Nair PMG, Chung IM. 2014. Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. B Environ Contam Tox. 92:719–725. doi: 10.1007/s00128-014-1254-1
  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179:154–163. doi: 10.1016/j.plantsci.2010.04.012
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17:372–386. doi: 10.1007/s10646-008-0214-0
  • Palchoudhury S, Jungjohann KL, Weerasena L, Arabshahi A, Gharge U, Albattah A, Miller J, Patel K, Holler RA. 2018. Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer. Royal Soc Chem Adv. 8:24075–24083.
  • Pariona N, Martinez AI, Hdz-García HM, Cruz LA, Hernandez-Valdes A. 2017. Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci. 24:1547–1554. doi: 10.1016/j.sjbs.2016.06.004
  • Peternele WS, Fuentes VM, Fascineli ML, Da Silva JR, Silva RC, Lucci CM, De Azevedo RB. 2014. Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. J Nanomater. 2014:1–10. doi: 10.1155/2014/682985
  • Ren H-X, Liu L, Liu C, He S-Y, Huang J, Li J-L, Zhang Y, Huang X-J, Gu N. 2011. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J Biomed Nanotechnol. 7:677–684. doi: 10.1166/jbn.2011.1338
  • Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 17:208–212. doi: 10.1083/jcb.17.1.208
  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia-Ur-Rehman M, Waris AA. 2019. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 214:269–277. doi: 10.1016/j.chemosphere.2018.09.120
  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 7:1–10. doi: 10.3389/fpls.2016.00815
  • Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Alwathnani HA, Okla MK, Dwivedi S, Musarrat J, et al. 2016. Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: deciphering the role of signaling factors, oxidative stress and cell death. J Environ Sci. 47:49–62. doi: 10.1016/j.jes.2015.12.037
  • Sebastian A, Nangia A, Prasad MNV. 2018. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J Cleaner Prod. 174:355–366. doi: 10.1016/j.jclepro.2017.10.343
  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J. 2016. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. 6:983–990. doi: 10.1007/s13204-015-0510-y
  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK. 2017. Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview. Plant Gene. 11:265–272. doi: 10.1016/j.plgene.2017.03.006
  • Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z. 2008. Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol. 165:1610–1619. doi: 10.1016/j.jplph.2007.11.004
  • Smith IK, Vierheller TL, Thorne CA. 1988. Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem. 175:408–413. doi: 10.1016/0003-2697(88)90564-7
  • Sokal RR, Rohlf FJ. 2013. Biometry: the principles and practice of statistics in biological research. In: Correa J, editor. New York: W.H. Freeman and Company; p. 177–602.
  • Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL. 2014. Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J Hazard Mater. 267:255–263. doi: 10.1016/j.jhazmat.2013.11.067
  • Wang M, Chen L, Chen S, Ma Y. 2012. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf. 79:48–54. doi: 10.1016/j.ecoenv.2011.11.044
  • Wang Y, Hu J, Dai Z, Li J, Huang J. 2016. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem. 108:353–360. doi: 10.1016/j.plaphy.2016.08.003
  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology. 5:30–42. doi: 10.3109/17435390.2010.489206
  • Wu T-M, Hsu Y-T, Lee T-M. 2009. Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Stud. 50:25–34.
  • Wu SG, Huang L, Head J, Chen D-R, Kong I-C, Tang YJ. 2012. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Petrol Environ Biotechnol. 3:1–5.
  • Yang J, Cao W, Rui Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact. 12:158–169. doi: 10.1080/17429145.2017.1310944
  • Zhang H, Jiang Y, He Z, Ma M. 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 162:977–984. doi: 10.1016/j.jplph.2004.10.001
  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H. 2018. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut. 239:689–697. doi: 10.1016/j.envpol.2018.04.066
  • Zuo Y, Zhang F. 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil. 339:83–95. doi: 10.1007/s11104-010-0566-0
  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. 2017. Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses - A review. Plant Physiol Biochem. 110:236–264. doi: 10.1016/j.plaphy.2016.05.037